Spaces:
Sleeping
Sleeping
métaboulie
commited on
Commit
·
3c962e6
1
Parent(s):
87e47b3
refactor(applicatives): `v0.1.3` of applicatives.py
Browse files- functional_programming/06_applicatives.py +478 -126
- functional_programming/CHANGELOG.md +46 -25
functional_programming/06_applicatives.py
CHANGED
|
@@ -7,12 +7,12 @@
|
|
| 7 |
|
| 8 |
import marimo
|
| 9 |
|
| 10 |
-
__generated_with = "0.12.
|
| 11 |
app = marimo.App(app_title="Applicative programming with effects")
|
| 12 |
|
| 13 |
|
| 14 |
@app.cell(hide_code=True)
|
| 15 |
-
def _(mo):
|
| 16 |
mo.md(
|
| 17 |
r"""
|
| 18 |
# Applicative programming with effects
|
|
@@ -26,25 +26,25 @@ def _(mo):
|
|
| 26 |
|
| 27 |
In this notebook, you will learn:
|
| 28 |
|
| 29 |
-
1. How to view `
|
| 30 |
2. How to use `lift` to simplify chaining application.
|
| 31 |
3. How to bring *effects* to the functional pure world.
|
| 32 |
-
4. How to view `
|
|
|
|
| 33 |
|
| 34 |
/// details | Notebook metadata
|
| 35 |
type: info
|
| 36 |
|
| 37 |
-
version: 0.1.
|
| 38 |
reviewer: [Haleshot](https://github.com/Haleshot)
|
| 39 |
|
| 40 |
///
|
| 41 |
"""
|
| 42 |
)
|
| 43 |
-
return
|
| 44 |
|
| 45 |
|
| 46 |
@app.cell(hide_code=True)
|
| 47 |
-
def _(mo):
|
| 48 |
mo.md(
|
| 49 |
r"""
|
| 50 |
# The intuition: [Multifunctor](https://arxiv.org/pdf/2401.14286)
|
|
@@ -68,17 +68,16 @@ def _(mo):
|
|
| 68 |
And we have to declare a special version of the functor class for each case.
|
| 69 |
"""
|
| 70 |
)
|
| 71 |
-
return
|
| 72 |
|
| 73 |
|
| 74 |
@app.cell(hide_code=True)
|
| 75 |
-
def _(mo):
|
| 76 |
mo.md(
|
| 77 |
r"""
|
| 78 |
## Defining Multifunctor
|
| 79 |
|
| 80 |
/// admonition
|
| 81 |
-
we use prefix `f` rather than `ap` to indicate *Applicative Functor*
|
| 82 |
///
|
| 83 |
|
| 84 |
As a result, we may want to define a single `Multifunctor` such that:
|
|
@@ -112,11 +111,10 @@ def _(mo):
|
|
| 112 |
```
|
| 113 |
"""
|
| 114 |
)
|
| 115 |
-
return
|
| 116 |
|
| 117 |
|
| 118 |
@app.cell(hide_code=True)
|
| 119 |
-
def _(mo):
|
| 120 |
mo.md(
|
| 121 |
r"""
|
| 122 |
## Pure, apply and lift
|
|
@@ -135,7 +133,7 @@ def _(mo):
|
|
| 135 |
# or if we have a regular function `g`
|
| 136 |
g: Callable[[A], B]
|
| 137 |
# then we can have `fg` as
|
| 138 |
-
fg: Applicative[Callable[[A], B]] = pure(g)
|
| 139 |
```
|
| 140 |
|
| 141 |
2. `apply`: applies a function inside an applicative functor to a value inside an applicative functor
|
|
@@ -155,11 +153,10 @@ def _(mo):
|
|
| 155 |
```
|
| 156 |
"""
|
| 157 |
)
|
| 158 |
-
return
|
| 159 |
|
| 160 |
|
| 161 |
@app.cell(hide_code=True)
|
| 162 |
-
def _(mo):
|
| 163 |
mo.md(
|
| 164 |
r"""
|
| 165 |
/// admonition | How to use *Applicative* in the manner of *Multifunctor*
|
|
@@ -175,7 +172,7 @@ def _(mo):
|
|
| 175 |
|
| 176 |
///
|
| 177 |
|
| 178 |
-
/// attention | You can suppress the chaining application of `apply` and `pure` as:
|
| 179 |
|
| 180 |
```python
|
| 181 |
apply(pure(g), fa) -> lift(g, fa)
|
|
@@ -186,11 +183,10 @@ def _(mo):
|
|
| 186 |
///
|
| 187 |
"""
|
| 188 |
)
|
| 189 |
-
return
|
| 190 |
|
| 191 |
|
| 192 |
@app.cell(hide_code=True)
|
| 193 |
-
def _(mo):
|
| 194 |
mo.md(
|
| 195 |
r"""
|
| 196 |
## Abstracting applicatives
|
|
@@ -203,14 +199,14 @@ def _(mo):
|
|
| 203 |
@classmethod
|
| 204 |
@abstractmethod
|
| 205 |
def pure(cls, a: A) -> "Applicative[A]":
|
| 206 |
-
|
| 207 |
|
| 208 |
@classmethod
|
| 209 |
@abstractmethod
|
| 210 |
def apply(
|
| 211 |
cls, fg: "Applicative[Callable[[A], B]]", fa: "Applicative[A]"
|
| 212 |
) -> "Applicative[B]":
|
| 213 |
-
|
| 214 |
|
| 215 |
@classmethod
|
| 216 |
def lift(cls, f: Callable, *args: "Applicative") -> "Applicative":
|
|
@@ -229,17 +225,15 @@ def _(mo):
|
|
| 229 |
///
|
| 230 |
"""
|
| 231 |
)
|
| 232 |
-
return
|
| 233 |
|
| 234 |
|
| 235 |
@app.cell(hide_code=True)
|
| 236 |
-
def _(mo):
|
| 237 |
mo.md(r"""# Instances, laws and utility functions""")
|
| 238 |
-
return
|
| 239 |
|
| 240 |
|
| 241 |
@app.cell(hide_code=True)
|
| 242 |
-
def _(mo):
|
| 243 |
mo.md(
|
| 244 |
r"""
|
| 245 |
## Applicative instances
|
|
@@ -250,16 +244,15 @@ def _(mo):
|
|
| 250 |
- apply a function inside the computation context to a value inside the computational context
|
| 251 |
"""
|
| 252 |
)
|
| 253 |
-
return
|
| 254 |
|
| 255 |
|
| 256 |
@app.cell(hide_code=True)
|
| 257 |
-
def _(mo):
|
| 258 |
mo.md(
|
| 259 |
r"""
|
| 260 |
-
### Wrapper
|
| 261 |
|
| 262 |
-
- `pure` should simply *wrap* an object, in the sense that:
|
| 263 |
|
| 264 |
```haskell
|
| 265 |
Wrapper.pure(1) => Wrapper(value=1)
|
|
@@ -270,7 +263,6 @@ def _(mo):
|
|
| 270 |
The implementation is:
|
| 271 |
"""
|
| 272 |
)
|
| 273 |
-
return
|
| 274 |
|
| 275 |
|
| 276 |
@app.cell
|
|
@@ -292,27 +284,25 @@ def _(Applicative, dataclass):
|
|
| 292 |
|
| 293 |
|
| 294 |
@app.cell(hide_code=True)
|
| 295 |
-
def _(mo):
|
| 296 |
mo.md(r"""> try with Wrapper below""")
|
| 297 |
-
return
|
| 298 |
|
| 299 |
|
| 300 |
@app.cell
|
| 301 |
-
def _(Wrapper):
|
| 302 |
Wrapper.lift(
|
| 303 |
lambda a: lambda b: lambda c: a + b * c,
|
| 304 |
Wrapper(1),
|
| 305 |
Wrapper(2),
|
| 306 |
Wrapper(3),
|
| 307 |
)
|
| 308 |
-
return
|
| 309 |
|
| 310 |
|
| 311 |
@app.cell(hide_code=True)
|
| 312 |
-
def _(mo):
|
| 313 |
mo.md(
|
| 314 |
r"""
|
| 315 |
-
### List
|
| 316 |
|
| 317 |
- `pure` should wrap the object in a list, in the sense that:
|
| 318 |
|
|
@@ -326,7 +316,6 @@ def _(mo):
|
|
| 326 |
The implementation is:
|
| 327 |
"""
|
| 328 |
)
|
| 329 |
-
return
|
| 330 |
|
| 331 |
|
| 332 |
@app.cell
|
|
@@ -346,31 +335,28 @@ def _(Applicative, dataclass, product):
|
|
| 346 |
|
| 347 |
|
| 348 |
@app.cell(hide_code=True)
|
| 349 |
-
def _(mo):
|
| 350 |
mo.md(r"""> try with List below""")
|
| 351 |
-
return
|
| 352 |
|
| 353 |
|
| 354 |
@app.cell
|
| 355 |
-
def _(List):
|
| 356 |
List.apply(
|
| 357 |
List([lambda a: a + 1, lambda a: a * 2]),
|
| 358 |
List([1, 2]),
|
| 359 |
)
|
| 360 |
-
return
|
| 361 |
|
| 362 |
|
| 363 |
@app.cell
|
| 364 |
-
def _(List):
|
| 365 |
List.lift(lambda a: lambda b: a + b, List([1, 2]), List([3, 4, 5]))
|
| 366 |
-
return
|
| 367 |
|
| 368 |
|
| 369 |
@app.cell(hide_code=True)
|
| 370 |
-
def _(mo):
|
| 371 |
mo.md(
|
| 372 |
r"""
|
| 373 |
-
### Maybe
|
| 374 |
|
| 375 |
- `pure` should wrap the object in a Maybe, in the sense that:
|
| 376 |
|
|
@@ -386,7 +372,6 @@ def _(mo):
|
|
| 386 |
The implementation is:
|
| 387 |
"""
|
| 388 |
)
|
| 389 |
-
return
|
| 390 |
|
| 391 |
|
| 392 |
@app.cell
|
|
@@ -414,33 +399,116 @@ def _(Applicative, dataclass):
|
|
| 414 |
|
| 415 |
|
| 416 |
@app.cell(hide_code=True)
|
| 417 |
-
def _(mo):
|
| 418 |
mo.md(r"""> try with Maybe below""")
|
| 419 |
-
return
|
| 420 |
|
| 421 |
|
| 422 |
@app.cell
|
| 423 |
-
def _(Maybe):
|
| 424 |
Maybe.lift(
|
| 425 |
lambda a: lambda b: a + b,
|
| 426 |
Maybe(1),
|
| 427 |
Maybe(2),
|
| 428 |
)
|
| 429 |
-
return
|
| 430 |
|
| 431 |
|
| 432 |
@app.cell
|
| 433 |
-
def _(Maybe):
|
| 434 |
Maybe.lift(
|
| 435 |
lambda a: lambda b: None,
|
| 436 |
Maybe(1),
|
| 437 |
Maybe(2),
|
| 438 |
)
|
| 439 |
-
return
|
| 440 |
|
| 441 |
|
| 442 |
@app.cell(hide_code=True)
|
| 443 |
-
def _(mo):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 444 |
mo.md(
|
| 445 |
r"""
|
| 446 |
## Collect the list of response with sequenceL
|
|
@@ -466,17 +534,15 @@ def _(mo):
|
|
| 466 |
Let's try `sequenceL` with the instances.
|
| 467 |
"""
|
| 468 |
)
|
| 469 |
-
return
|
| 470 |
|
| 471 |
|
| 472 |
@app.cell
|
| 473 |
-
def _(Wrapper):
|
| 474 |
Wrapper.sequenceL([Wrapper(1), Wrapper(2), Wrapper(3)])
|
| 475 |
-
return
|
| 476 |
|
| 477 |
|
| 478 |
@app.cell(hide_code=True)
|
| 479 |
-
def _(mo):
|
| 480 |
mo.md(
|
| 481 |
r"""
|
| 482 |
/// attention
|
|
@@ -484,29 +550,25 @@ def _(mo):
|
|
| 484 |
///
|
| 485 |
"""
|
| 486 |
)
|
| 487 |
-
return
|
| 488 |
|
| 489 |
|
| 490 |
@app.cell
|
| 491 |
-
def _(Maybe):
|
| 492 |
Maybe.sequenceL([Maybe(1), Maybe(2), Maybe(None), Maybe(3)])
|
| 493 |
-
return
|
| 494 |
|
| 495 |
|
| 496 |
@app.cell(hide_code=True)
|
| 497 |
-
def _(mo):
|
| 498 |
mo.md(r"""The result of `sequenceL` for `List Applicative` is the Cartesian product of the input lists, yielding all possible ordered combinations of elements from each list.""")
|
| 499 |
-
return
|
| 500 |
|
| 501 |
|
| 502 |
@app.cell
|
| 503 |
-
def _(List):
|
| 504 |
List.sequenceL([List([1, 2]), List([3]), List([5, 6, 7])])
|
| 505 |
-
return
|
| 506 |
|
| 507 |
|
| 508 |
@app.cell(hide_code=True)
|
| 509 |
-
def _(mo):
|
| 510 |
mo.md(
|
| 511 |
r"""
|
| 512 |
## Applicative laws
|
|
@@ -550,7 +612,7 @@ def _(mo):
|
|
| 550 |
```
|
| 551 |
This one is the trickiest law to gain intuition for. In some sense it is expressing a sort of associativity property of `apply`.
|
| 552 |
|
| 553 |
-
We can add 4 helper functions to `Applicative` to check whether an instance respects the laws or not:
|
| 554 |
|
| 555 |
```python
|
| 556 |
@dataclass
|
|
@@ -589,7 +651,6 @@ def _(mo):
|
|
| 589 |
> Try to validate applicative laws below
|
| 590 |
"""
|
| 591 |
)
|
| 592 |
-
return
|
| 593 |
|
| 594 |
|
| 595 |
@app.cell
|
|
@@ -601,7 +662,7 @@ def _():
|
|
| 601 |
|
| 602 |
|
| 603 |
@app.cell
|
| 604 |
-
def _(List, Wrapper):
|
| 605 |
print("Checking Wrapper")
|
| 606 |
print(Wrapper.check_identity(Wrapper.pure(1)))
|
| 607 |
print(Wrapper.check_homomorphism(1, lambda x: x + 1))
|
|
@@ -623,11 +684,10 @@ def _(List, Wrapper):
|
|
| 623 |
List.pure(lambda x: x * 2), List.pure(lambda x: x + 0.1), List.pure(1)
|
| 624 |
)
|
| 625 |
)
|
| 626 |
-
return
|
| 627 |
|
| 628 |
|
| 629 |
@app.cell(hide_code=True)
|
| 630 |
-
def _(mo):
|
| 631 |
mo.md(
|
| 632 |
r"""
|
| 633 |
## Utility functions
|
|
@@ -664,22 +724,21 @@ def _(mo):
|
|
| 664 |
cls, fa: "Applicative[A]", fg: "Applicative[Callable[[A], [B]]]"
|
| 665 |
) -> "Applicative[B]":
|
| 666 |
'''
|
| 667 |
-
The first computation produces values which are provided
|
| 668 |
-
as input to the function(s) produced by the second computation.
|
| 669 |
'''
|
| 670 |
return cls.lift(lambda a: lambda f: f(a), fa, fg)
|
| 671 |
```
|
| 672 |
|
| 673 |
- `skip` sequences the effects of two Applicative computations, but **discards the result of the first**. For example, if `m1` and `m2` are instances of type `Maybe[Int]`, then `Maybe.skip(m1, m2)` is `Nothing` whenever either `m1` or `m2` is `Nothing`; but if not, it will have the same value as `m2`.
|
| 674 |
- Likewise, `keep` sequences the effects of two computations, but **keeps only the result of the first**.
|
| 675 |
-
- `revapp` is similar to `apply`, but where the first computation produces value(s) which are provided as input to the function(s) produced by the second computation.
|
| 676 |
"""
|
| 677 |
)
|
| 678 |
-
return
|
| 679 |
|
| 680 |
|
| 681 |
@app.cell(hide_code=True)
|
| 682 |
-
def _(mo):
|
| 683 |
mo.md(
|
| 684 |
r"""
|
| 685 |
/// admonition | exercise
|
|
@@ -687,11 +746,10 @@ def _(mo):
|
|
| 687 |
///
|
| 688 |
"""
|
| 689 |
)
|
| 690 |
-
return
|
| 691 |
|
| 692 |
|
| 693 |
@app.cell(hide_code=True)
|
| 694 |
-
def _(mo):
|
| 695 |
mo.md(
|
| 696 |
r"""
|
| 697 |
# Formal implementation of Applicative
|
|
@@ -699,7 +757,6 @@ def _(mo):
|
|
| 699 |
Now, we can give the formal implementation of `Applicative`
|
| 700 |
"""
|
| 701 |
)
|
| 702 |
-
return
|
| 703 |
|
| 704 |
|
| 705 |
@app.cell
|
|
@@ -720,7 +777,8 @@ def _(
|
|
| 720 |
@abstractmethod
|
| 721 |
def pure(cls, a: A) -> "Applicative[A]":
|
| 722 |
"""Lift a value into the Structure."""
|
| 723 |
-
|
|
|
|
| 724 |
|
| 725 |
@classmethod
|
| 726 |
@abstractmethod
|
|
@@ -728,7 +786,8 @@ def _(
|
|
| 728 |
cls, fg: "Applicative[Callable[[A], B]]", fa: "Applicative[A]"
|
| 729 |
) -> "Applicative[B]":
|
| 730 |
"""Sequential application."""
|
| 731 |
-
|
|
|
|
| 732 |
|
| 733 |
@classmethod
|
| 734 |
def lift(cls, f: Callable, *args: "Applicative") -> "Applicative":
|
|
@@ -758,7 +817,7 @@ def _(
|
|
| 758 |
return cls.pure([])
|
| 759 |
|
| 760 |
return cls.apply(
|
| 761 |
-
cls.fmap(lambda v: lambda vs: [v
|
| 762 |
cls.sequenceL(fas[1:]),
|
| 763 |
)
|
| 764 |
|
|
@@ -793,21 +852,24 @@ def _(
|
|
| 793 |
return cls.lift(lambda a: lambda f: f(a), fa, fg)
|
| 794 |
|
| 795 |
@classmethod
|
| 796 |
-
def check_identity(cls, fa: "Applicative[A]"):
|
| 797 |
if cls.lift(id, fa) != fa:
|
| 798 |
-
|
|
|
|
| 799 |
return True
|
| 800 |
|
| 801 |
@classmethod
|
| 802 |
-
def check_homomorphism(cls, a: A, f: Callable[[A], B]):
|
| 803 |
if cls.lift(f, cls.pure(a)) != cls.pure(f(a)):
|
| 804 |
-
|
|
|
|
| 805 |
return True
|
| 806 |
|
| 807 |
@classmethod
|
| 808 |
-
def check_interchange(cls, a: A, fg: "Applicative[Callable[[A], B]]"):
|
| 809 |
if cls.apply(fg, cls.pure(a)) != cls.lift(lambda g: g(a), fg):
|
| 810 |
-
|
|
|
|
| 811 |
return True
|
| 812 |
|
| 813 |
@classmethod
|
|
@@ -816,15 +878,16 @@ def _(
|
|
| 816 |
fg: "Applicative[Callable[[B], C]]",
|
| 817 |
fh: "Applicative[Callable[[A], B]]",
|
| 818 |
fa: "Applicative[A]",
|
| 819 |
-
):
|
| 820 |
if cls.apply(fg, cls.apply(fh, fa)) != cls.lift(compose, fg, fh, fa):
|
| 821 |
-
|
|
|
|
| 822 |
return True
|
| 823 |
return (Applicative,)
|
| 824 |
|
| 825 |
|
| 826 |
@app.cell(hide_code=True)
|
| 827 |
-
def _(mo):
|
| 828 |
mo.md(
|
| 829 |
r"""
|
| 830 |
# Effectful programming
|
|
@@ -834,11 +897,10 @@ def _(mo):
|
|
| 834 |
The arguments are no longer just plain values but may also have effects, such as the possibility of failure, having many ways to succeed, or performing input/output actions. In this manner, applicative functors can also be viewed as abstracting the idea of **applying pure functions to effectful arguments**, with the precise form of effects that are permitted depending on the nature of the underlying functor.
|
| 835 |
"""
|
| 836 |
)
|
| 837 |
-
return
|
| 838 |
|
| 839 |
|
| 840 |
@app.cell(hide_code=True)
|
| 841 |
-
def _(mo):
|
| 842 |
mo.md(
|
| 843 |
r"""
|
| 844 |
## The IO Applicative
|
|
@@ -847,7 +909,7 @@ def _(mo):
|
|
| 847 |
|
| 848 |
As before, we first abstract how `pure` and `apply` should function.
|
| 849 |
|
| 850 |
-
- `pure` should wrap the object in an IO action, and make the object *callable* if it's not because we want to perform the action later:
|
| 851 |
|
| 852 |
```haskell
|
| 853 |
IO.pure(1) => IO(effect=lambda: 1)
|
|
@@ -859,7 +921,6 @@ def _(mo):
|
|
| 859 |
The implementation is:
|
| 860 |
"""
|
| 861 |
)
|
| 862 |
-
return
|
| 863 |
|
| 864 |
|
| 865 |
@app.cell
|
|
@@ -882,34 +943,32 @@ def _(Applicative, Callable, dataclass):
|
|
| 882 |
|
| 883 |
|
| 884 |
@app.cell(hide_code=True)
|
| 885 |
-
def _(mo):
|
| 886 |
mo.md(r"""For example, a function that reads a given number of lines from the keyboard can be defined in applicative style as follows:""")
|
| 887 |
-
return
|
| 888 |
|
| 889 |
|
| 890 |
@app.cell
|
| 891 |
def _(IO):
|
| 892 |
def get_chars(n: int = 3):
|
| 893 |
-
return IO.sequenceL(
|
| 894 |
-
|
| 895 |
-
)
|
| 896 |
return (get_chars,)
|
| 897 |
|
| 898 |
|
| 899 |
@app.cell
|
| 900 |
-
def _():
|
| 901 |
# get_chars()()
|
| 902 |
return
|
| 903 |
|
| 904 |
|
| 905 |
@app.cell(hide_code=True)
|
| 906 |
-
def _(mo):
|
| 907 |
mo.md(r"""# From the perspective of category theory""")
|
| 908 |
-
return
|
| 909 |
|
| 910 |
|
| 911 |
@app.cell(hide_code=True)
|
| 912 |
-
def _(mo):
|
| 913 |
mo.md(
|
| 914 |
r"""
|
| 915 |
## Lax Monoidal Functor
|
|
@@ -917,7 +976,6 @@ def _(mo):
|
|
| 917 |
An alternative, equivalent formulation of `Applicative` is given by
|
| 918 |
"""
|
| 919 |
)
|
| 920 |
-
return
|
| 921 |
|
| 922 |
|
| 923 |
@app.cell
|
|
@@ -939,10 +997,10 @@ def _(ABC, Functor, abstractmethod, dataclass):
|
|
| 939 |
|
| 940 |
|
| 941 |
@app.cell(hide_code=True)
|
| 942 |
-
def _(mo):
|
| 943 |
mo.md(
|
| 944 |
r"""
|
| 945 |
-
Intuitively, this states that a *monoidal functor* is one which has some sort of "default shape" and which supports some sort of "combining" operation.
|
| 946 |
|
| 947 |
- `unit` provides the identity element
|
| 948 |
- `tensor` combines two contexts into a product context
|
|
@@ -950,14 +1008,13 @@ def _(mo):
|
|
| 950 |
More technically, the idea is that `monoidal functor` preserves the "monoidal structure" given by the pairing constructor `(,)` and unit type `()`.
|
| 951 |
"""
|
| 952 |
)
|
| 953 |
-
return
|
| 954 |
|
| 955 |
|
| 956 |
@app.cell(hide_code=True)
|
| 957 |
-
def _(mo):
|
| 958 |
mo.md(
|
| 959 |
r"""
|
| 960 |
-
Furthermore, to deserve the name "monoidal", instances of Monoidal ought to satisfy the following laws, which seem much more straightforward than the traditional Applicative laws:
|
| 961 |
|
| 962 |
- Left identity
|
| 963 |
|
|
@@ -972,11 +1029,10 @@ def _(mo):
|
|
| 972 |
`tensor(u, tensor(v, w)) ≅ tensor(tensor(u, v), w)`
|
| 973 |
"""
|
| 974 |
)
|
| 975 |
-
return
|
| 976 |
|
| 977 |
|
| 978 |
@app.cell(hide_code=True)
|
| 979 |
-
def _(mo):
|
| 980 |
mo.md(
|
| 981 |
r"""
|
| 982 |
/// admonition | ≅ indicates isomorphism
|
|
@@ -988,11 +1044,10 @@ def _(mo):
|
|
| 988 |
///
|
| 989 |
"""
|
| 990 |
)
|
| 991 |
-
return
|
| 992 |
|
| 993 |
|
| 994 |
@app.cell(hide_code=True)
|
| 995 |
-
def _(mo):
|
| 996 |
mo.md(
|
| 997 |
r"""
|
| 998 |
## Mutual definability of Monoidal and Applicative
|
|
@@ -1010,11 +1065,10 @@ def _(mo):
|
|
| 1010 |
```
|
| 1011 |
"""
|
| 1012 |
)
|
| 1013 |
-
return
|
| 1014 |
|
| 1015 |
|
| 1016 |
@app.cell(hide_code=True)
|
| 1017 |
-
def _(mo):
|
| 1018 |
mo.md(
|
| 1019 |
r"""
|
| 1020 |
## Instance: ListMonoidal
|
|
@@ -1030,7 +1084,6 @@ def _(mo):
|
|
| 1030 |
The implementation is:
|
| 1031 |
"""
|
| 1032 |
)
|
| 1033 |
-
return
|
| 1034 |
|
| 1035 |
|
| 1036 |
@app.cell
|
|
@@ -1058,9 +1111,8 @@ def _(B, Callable, Monoidal, dataclass, product):
|
|
| 1058 |
|
| 1059 |
|
| 1060 |
@app.cell(hide_code=True)
|
| 1061 |
-
def _(mo):
|
| 1062 |
mo.md(r"""> try with `ListMonoidal` below""")
|
| 1063 |
-
return
|
| 1064 |
|
| 1065 |
|
| 1066 |
@app.cell
|
|
@@ -1072,15 +1124,13 @@ def _(ListMonoidal):
|
|
| 1072 |
|
| 1073 |
|
| 1074 |
@app.cell(hide_code=True)
|
| 1075 |
-
def _(mo):
|
| 1076 |
mo.md(r"""and we can prove that `tensor(fa, fb) = lift(lambda fa: lambda fb: (fa, fb), fa, fb)`:""")
|
| 1077 |
-
return
|
| 1078 |
|
| 1079 |
|
| 1080 |
@app.cell
|
| 1081 |
-
def _(List, xs, ys):
|
| 1082 |
List.lift(lambda fa: lambda fb: (fa, fb), List(xs.items), List(ys.items))
|
| 1083 |
-
return
|
| 1084 |
|
| 1085 |
|
| 1086 |
@app.cell(hide_code=True)
|
|
@@ -1090,7 +1140,8 @@ def _(ABC, B, Callable, abstractmethod, dataclass):
|
|
| 1090 |
@classmethod
|
| 1091 |
@abstractmethod
|
| 1092 |
def fmap(cls, f: Callable[[A], B], a: "Functor[A]") -> "Functor[B]":
|
| 1093 |
-
|
|
|
|
| 1094 |
|
| 1095 |
@classmethod
|
| 1096 |
def const(cls, a: "Functor[A]", b: B) -> "Functor[B]":
|
|
@@ -1110,10 +1161,10 @@ def _():
|
|
| 1110 |
|
| 1111 |
@app.cell(hide_code=True)
|
| 1112 |
def _():
|
| 1113 |
-
from dataclasses import dataclass
|
| 1114 |
from abc import ABC, abstractmethod
|
| 1115 |
-
from typing import TypeVar, Union
|
| 1116 |
from collections.abc import Callable
|
|
|
|
|
|
|
| 1117 |
return ABC, Callable, TypeVar, Union, abstractmethod, dataclass
|
| 1118 |
|
| 1119 |
|
|
@@ -1132,7 +1183,309 @@ def _(TypeVar):
|
|
| 1132 |
|
| 1133 |
|
| 1134 |
@app.cell(hide_code=True)
|
| 1135 |
-
def _(mo):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1136 |
mo.md(
|
| 1137 |
r"""
|
| 1138 |
# Further reading
|
|
@@ -1155,7 +1508,6 @@ def _(mo):
|
|
| 1155 |
- [Applicative Functors](https://bartoszmilewski.com/2017/02/06/applicative-functors/)
|
| 1156 |
"""
|
| 1157 |
)
|
| 1158 |
-
return
|
| 1159 |
|
| 1160 |
|
| 1161 |
if __name__ == "__main__":
|
|
|
|
| 7 |
|
| 8 |
import marimo
|
| 9 |
|
| 10 |
+
__generated_with = "0.12.9"
|
| 11 |
app = marimo.App(app_title="Applicative programming with effects")
|
| 12 |
|
| 13 |
|
| 14 |
@app.cell(hide_code=True)
|
| 15 |
+
def _(mo) -> None:
|
| 16 |
mo.md(
|
| 17 |
r"""
|
| 18 |
# Applicative programming with effects
|
|
|
|
| 26 |
|
| 27 |
In this notebook, you will learn:
|
| 28 |
|
| 29 |
+
1. How to view `Applicative` as multi-functor intuitively.
|
| 30 |
2. How to use `lift` to simplify chaining application.
|
| 31 |
3. How to bring *effects* to the functional pure world.
|
| 32 |
+
4. How to view `Applicative` as a lax monoidal functor.
|
| 33 |
+
5. How to use `Alternative` to amalgamate multiple computations into a single computation.
|
| 34 |
|
| 35 |
/// details | Notebook metadata
|
| 36 |
type: info
|
| 37 |
|
| 38 |
+
version: 0.1.3 | last modified: 2025-04-16 | author: [métaboulie](https://github.com/metaboulie)<br/>
|
| 39 |
reviewer: [Haleshot](https://github.com/Haleshot)
|
| 40 |
|
| 41 |
///
|
| 42 |
"""
|
| 43 |
)
|
|
|
|
| 44 |
|
| 45 |
|
| 46 |
@app.cell(hide_code=True)
|
| 47 |
+
def _(mo) -> None:
|
| 48 |
mo.md(
|
| 49 |
r"""
|
| 50 |
# The intuition: [Multifunctor](https://arxiv.org/pdf/2401.14286)
|
|
|
|
| 68 |
And we have to declare a special version of the functor class for each case.
|
| 69 |
"""
|
| 70 |
)
|
|
|
|
| 71 |
|
| 72 |
|
| 73 |
@app.cell(hide_code=True)
|
| 74 |
+
def _(mo) -> None:
|
| 75 |
mo.md(
|
| 76 |
r"""
|
| 77 |
## Defining Multifunctor
|
| 78 |
|
| 79 |
/// admonition
|
| 80 |
+
we use prefix `f` rather than `ap` to indicate *Applicative Functor*
|
| 81 |
///
|
| 82 |
|
| 83 |
As a result, we may want to define a single `Multifunctor` such that:
|
|
|
|
| 111 |
```
|
| 112 |
"""
|
| 113 |
)
|
|
|
|
| 114 |
|
| 115 |
|
| 116 |
@app.cell(hide_code=True)
|
| 117 |
+
def _(mo) -> None:
|
| 118 |
mo.md(
|
| 119 |
r"""
|
| 120 |
## Pure, apply and lift
|
|
|
|
| 133 |
# or if we have a regular function `g`
|
| 134 |
g: Callable[[A], B]
|
| 135 |
# then we can have `fg` as
|
| 136 |
+
fg: Applicative[Callable[[A], B]] = pure(g)
|
| 137 |
```
|
| 138 |
|
| 139 |
2. `apply`: applies a function inside an applicative functor to a value inside an applicative functor
|
|
|
|
| 153 |
```
|
| 154 |
"""
|
| 155 |
)
|
|
|
|
| 156 |
|
| 157 |
|
| 158 |
@app.cell(hide_code=True)
|
| 159 |
+
def _(mo) -> None:
|
| 160 |
mo.md(
|
| 161 |
r"""
|
| 162 |
/// admonition | How to use *Applicative* in the manner of *Multifunctor*
|
|
|
|
| 172 |
|
| 173 |
///
|
| 174 |
|
| 175 |
+
/// attention | You can suppress the chaining application of `apply` and `pure` as:
|
| 176 |
|
| 177 |
```python
|
| 178 |
apply(pure(g), fa) -> lift(g, fa)
|
|
|
|
| 183 |
///
|
| 184 |
"""
|
| 185 |
)
|
|
|
|
| 186 |
|
| 187 |
|
| 188 |
@app.cell(hide_code=True)
|
| 189 |
+
def _(mo) -> None:
|
| 190 |
mo.md(
|
| 191 |
r"""
|
| 192 |
## Abstracting applicatives
|
|
|
|
| 199 |
@classmethod
|
| 200 |
@abstractmethod
|
| 201 |
def pure(cls, a: A) -> "Applicative[A]":
|
| 202 |
+
raise NotImplementedError("Subclasses must implement pure")
|
| 203 |
|
| 204 |
@classmethod
|
| 205 |
@abstractmethod
|
| 206 |
def apply(
|
| 207 |
cls, fg: "Applicative[Callable[[A], B]]", fa: "Applicative[A]"
|
| 208 |
) -> "Applicative[B]":
|
| 209 |
+
raise NotImplementedError("Subclasses must implement apply")
|
| 210 |
|
| 211 |
@classmethod
|
| 212 |
def lift(cls, f: Callable, *args: "Applicative") -> "Applicative":
|
|
|
|
| 225 |
///
|
| 226 |
"""
|
| 227 |
)
|
|
|
|
| 228 |
|
| 229 |
|
| 230 |
@app.cell(hide_code=True)
|
| 231 |
+
def _(mo) -> None:
|
| 232 |
mo.md(r"""# Instances, laws and utility functions""")
|
|
|
|
| 233 |
|
| 234 |
|
| 235 |
@app.cell(hide_code=True)
|
| 236 |
+
def _(mo) -> None:
|
| 237 |
mo.md(
|
| 238 |
r"""
|
| 239 |
## Applicative instances
|
|
|
|
| 244 |
- apply a function inside the computation context to a value inside the computational context
|
| 245 |
"""
|
| 246 |
)
|
|
|
|
| 247 |
|
| 248 |
|
| 249 |
@app.cell(hide_code=True)
|
| 250 |
+
def _(mo) -> None:
|
| 251 |
mo.md(
|
| 252 |
r"""
|
| 253 |
+
### The Wrapper Applicative
|
| 254 |
|
| 255 |
+
- `pure` should simply *wrap* an object, in the sense that:
|
| 256 |
|
| 257 |
```haskell
|
| 258 |
Wrapper.pure(1) => Wrapper(value=1)
|
|
|
|
| 263 |
The implementation is:
|
| 264 |
"""
|
| 265 |
)
|
|
|
|
| 266 |
|
| 267 |
|
| 268 |
@app.cell
|
|
|
|
| 284 |
|
| 285 |
|
| 286 |
@app.cell(hide_code=True)
|
| 287 |
+
def _(mo) -> None:
|
| 288 |
mo.md(r"""> try with Wrapper below""")
|
|
|
|
| 289 |
|
| 290 |
|
| 291 |
@app.cell
|
| 292 |
+
def _(Wrapper) -> None:
|
| 293 |
Wrapper.lift(
|
| 294 |
lambda a: lambda b: lambda c: a + b * c,
|
| 295 |
Wrapper(1),
|
| 296 |
Wrapper(2),
|
| 297 |
Wrapper(3),
|
| 298 |
)
|
|
|
|
| 299 |
|
| 300 |
|
| 301 |
@app.cell(hide_code=True)
|
| 302 |
+
def _(mo) -> None:
|
| 303 |
mo.md(
|
| 304 |
r"""
|
| 305 |
+
### The List Applicative
|
| 306 |
|
| 307 |
- `pure` should wrap the object in a list, in the sense that:
|
| 308 |
|
|
|
|
| 316 |
The implementation is:
|
| 317 |
"""
|
| 318 |
)
|
|
|
|
| 319 |
|
| 320 |
|
| 321 |
@app.cell
|
|
|
|
| 335 |
|
| 336 |
|
| 337 |
@app.cell(hide_code=True)
|
| 338 |
+
def _(mo) -> None:
|
| 339 |
mo.md(r"""> try with List below""")
|
|
|
|
| 340 |
|
| 341 |
|
| 342 |
@app.cell
|
| 343 |
+
def _(List) -> None:
|
| 344 |
List.apply(
|
| 345 |
List([lambda a: a + 1, lambda a: a * 2]),
|
| 346 |
List([1, 2]),
|
| 347 |
)
|
|
|
|
| 348 |
|
| 349 |
|
| 350 |
@app.cell
|
| 351 |
+
def _(List) -> None:
|
| 352 |
List.lift(lambda a: lambda b: a + b, List([1, 2]), List([3, 4, 5]))
|
|
|
|
| 353 |
|
| 354 |
|
| 355 |
@app.cell(hide_code=True)
|
| 356 |
+
def _(mo) -> None:
|
| 357 |
mo.md(
|
| 358 |
r"""
|
| 359 |
+
### The Maybe Applicative
|
| 360 |
|
| 361 |
- `pure` should wrap the object in a Maybe, in the sense that:
|
| 362 |
|
|
|
|
| 372 |
The implementation is:
|
| 373 |
"""
|
| 374 |
)
|
|
|
|
| 375 |
|
| 376 |
|
| 377 |
@app.cell
|
|
|
|
| 399 |
|
| 400 |
|
| 401 |
@app.cell(hide_code=True)
|
| 402 |
+
def _(mo) -> None:
|
| 403 |
mo.md(r"""> try with Maybe below""")
|
|
|
|
| 404 |
|
| 405 |
|
| 406 |
@app.cell
|
| 407 |
+
def _(Maybe) -> None:
|
| 408 |
Maybe.lift(
|
| 409 |
lambda a: lambda b: a + b,
|
| 410 |
Maybe(1),
|
| 411 |
Maybe(2),
|
| 412 |
)
|
|
|
|
| 413 |
|
| 414 |
|
| 415 |
@app.cell
|
| 416 |
+
def _(Maybe) -> None:
|
| 417 |
Maybe.lift(
|
| 418 |
lambda a: lambda b: None,
|
| 419 |
Maybe(1),
|
| 420 |
Maybe(2),
|
| 421 |
)
|
|
|
|
| 422 |
|
| 423 |
|
| 424 |
@app.cell(hide_code=True)
|
| 425 |
+
def _(mo) -> None:
|
| 426 |
+
mo.md(
|
| 427 |
+
r"""
|
| 428 |
+
### The Either Applicative
|
| 429 |
+
|
| 430 |
+
- `pure` should wrap the object in `Right`, in the sense that:
|
| 431 |
+
|
| 432 |
+
```haskell
|
| 433 |
+
Either.pure(1) => Right(1)
|
| 434 |
+
```
|
| 435 |
+
|
| 436 |
+
- `apply` should apply a function that is either on Left or Right to a value that is either on Left or Right
|
| 437 |
+
- if the function is `Left`, simply returns the `Left` of the function
|
| 438 |
+
- else `fmap` the `Right` of the function to the value
|
| 439 |
+
|
| 440 |
+
The implementation is:
|
| 441 |
+
"""
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
|
| 445 |
+
@app.cell
|
| 446 |
+
def _(Applicative, B, Callable, Union, dataclass):
|
| 447 |
+
@dataclass
|
| 448 |
+
class Either[A](Applicative):
|
| 449 |
+
left: A = None
|
| 450 |
+
right: A = None
|
| 451 |
+
|
| 452 |
+
def __post_init__(self):
|
| 453 |
+
if (self.left is not None and self.right is not None) or (
|
| 454 |
+
self.left is None and self.right is None
|
| 455 |
+
):
|
| 456 |
+
msg = "Provide either the value of the left or the value of the right."
|
| 457 |
+
raise TypeError(
|
| 458 |
+
msg
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
@classmethod
|
| 462 |
+
def pure(cls, a: A) -> "Either[A]":
|
| 463 |
+
return cls(right=a)
|
| 464 |
+
|
| 465 |
+
@classmethod
|
| 466 |
+
def apply(
|
| 467 |
+
cls, fg: "Either[Callable[[A], B]]", fa: "Either[A]"
|
| 468 |
+
) -> "Either[B]":
|
| 469 |
+
if fg.left is not None:
|
| 470 |
+
return cls(left=fg.left)
|
| 471 |
+
return cls.fmap(fg.right, fa)
|
| 472 |
+
|
| 473 |
+
@classmethod
|
| 474 |
+
def fmap(
|
| 475 |
+
cls, g: Callable[[A], B], fa: "Either[A]"
|
| 476 |
+
) -> Union["Either[A]", "Either[B]"]:
|
| 477 |
+
if fa.left is not None:
|
| 478 |
+
return cls(left=fa.left)
|
| 479 |
+
return cls(right=g(fa.right))
|
| 480 |
+
|
| 481 |
+
def __repr__(self):
|
| 482 |
+
if self.left is not None:
|
| 483 |
+
return f"Left({self.left!r})"
|
| 484 |
+
return f"Right({self.right!r})"
|
| 485 |
+
return (Either,)
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
@app.cell(hide_code=True)
|
| 489 |
+
def _(mo) -> None:
|
| 490 |
+
mo.md(r"""> try with `Either` below""")
|
| 491 |
+
|
| 492 |
+
|
| 493 |
+
@app.cell
|
| 494 |
+
def _(Either) -> None:
|
| 495 |
+
Either.apply(Either(left=TypeError("Parse Error")), Either(right=2))
|
| 496 |
+
|
| 497 |
+
|
| 498 |
+
@app.cell
|
| 499 |
+
def _(Either) -> None:
|
| 500 |
+
Either.apply(
|
| 501 |
+
Either(right=lambda x: x + 1), Either(left=TypeError("Parse Error"))
|
| 502 |
+
)
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
@app.cell
|
| 506 |
+
def _(Either) -> None:
|
| 507 |
+
Either.apply(Either(right=lambda x: x + 1), Either(right=1))
|
| 508 |
+
|
| 509 |
+
|
| 510 |
+
@app.cell(hide_code=True)
|
| 511 |
+
def _(mo) -> None:
|
| 512 |
mo.md(
|
| 513 |
r"""
|
| 514 |
## Collect the list of response with sequenceL
|
|
|
|
| 534 |
Let's try `sequenceL` with the instances.
|
| 535 |
"""
|
| 536 |
)
|
|
|
|
| 537 |
|
| 538 |
|
| 539 |
@app.cell
|
| 540 |
+
def _(Wrapper) -> None:
|
| 541 |
Wrapper.sequenceL([Wrapper(1), Wrapper(2), Wrapper(3)])
|
|
|
|
| 542 |
|
| 543 |
|
| 544 |
@app.cell(hide_code=True)
|
| 545 |
+
def _(mo) -> None:
|
| 546 |
mo.md(
|
| 547 |
r"""
|
| 548 |
/// attention
|
|
|
|
| 550 |
///
|
| 551 |
"""
|
| 552 |
)
|
|
|
|
| 553 |
|
| 554 |
|
| 555 |
@app.cell
|
| 556 |
+
def _(Maybe) -> None:
|
| 557 |
Maybe.sequenceL([Maybe(1), Maybe(2), Maybe(None), Maybe(3)])
|
|
|
|
| 558 |
|
| 559 |
|
| 560 |
@app.cell(hide_code=True)
|
| 561 |
+
def _(mo) -> None:
|
| 562 |
mo.md(r"""The result of `sequenceL` for `List Applicative` is the Cartesian product of the input lists, yielding all possible ordered combinations of elements from each list.""")
|
|
|
|
| 563 |
|
| 564 |
|
| 565 |
@app.cell
|
| 566 |
+
def _(List) -> None:
|
| 567 |
List.sequenceL([List([1, 2]), List([3]), List([5, 6, 7])])
|
|
|
|
| 568 |
|
| 569 |
|
| 570 |
@app.cell(hide_code=True)
|
| 571 |
+
def _(mo) -> None:
|
| 572 |
mo.md(
|
| 573 |
r"""
|
| 574 |
## Applicative laws
|
|
|
|
| 612 |
```
|
| 613 |
This one is the trickiest law to gain intuition for. In some sense it is expressing a sort of associativity property of `apply`.
|
| 614 |
|
| 615 |
+
We can add 4 helper functions to `Applicative` to check whether an instance respects the laws or not:
|
| 616 |
|
| 617 |
```python
|
| 618 |
@dataclass
|
|
|
|
| 651 |
> Try to validate applicative laws below
|
| 652 |
"""
|
| 653 |
)
|
|
|
|
| 654 |
|
| 655 |
|
| 656 |
@app.cell
|
|
|
|
| 662 |
|
| 663 |
|
| 664 |
@app.cell
|
| 665 |
+
def _(List, Wrapper) -> None:
|
| 666 |
print("Checking Wrapper")
|
| 667 |
print(Wrapper.check_identity(Wrapper.pure(1)))
|
| 668 |
print(Wrapper.check_homomorphism(1, lambda x: x + 1))
|
|
|
|
| 684 |
List.pure(lambda x: x * 2), List.pure(lambda x: x + 0.1), List.pure(1)
|
| 685 |
)
|
| 686 |
)
|
|
|
|
| 687 |
|
| 688 |
|
| 689 |
@app.cell(hide_code=True)
|
| 690 |
+
def _(mo) -> None:
|
| 691 |
mo.md(
|
| 692 |
r"""
|
| 693 |
## Utility functions
|
|
|
|
| 724 |
cls, fa: "Applicative[A]", fg: "Applicative[Callable[[A], [B]]]"
|
| 725 |
) -> "Applicative[B]":
|
| 726 |
'''
|
| 727 |
+
The first computation produces values which are provided
|
| 728 |
+
as input to the function(s) produced by the second computation.
|
| 729 |
'''
|
| 730 |
return cls.lift(lambda a: lambda f: f(a), fa, fg)
|
| 731 |
```
|
| 732 |
|
| 733 |
- `skip` sequences the effects of two Applicative computations, but **discards the result of the first**. For example, if `m1` and `m2` are instances of type `Maybe[Int]`, then `Maybe.skip(m1, m2)` is `Nothing` whenever either `m1` or `m2` is `Nothing`; but if not, it will have the same value as `m2`.
|
| 734 |
- Likewise, `keep` sequences the effects of two computations, but **keeps only the result of the first**.
|
| 735 |
+
- `revapp` is similar to `apply`, but where the first computation produces value(s) which are provided as input to the function(s) produced by the second computation.
|
| 736 |
"""
|
| 737 |
)
|
|
|
|
| 738 |
|
| 739 |
|
| 740 |
@app.cell(hide_code=True)
|
| 741 |
+
def _(mo) -> None:
|
| 742 |
mo.md(
|
| 743 |
r"""
|
| 744 |
/// admonition | exercise
|
|
|
|
| 746 |
///
|
| 747 |
"""
|
| 748 |
)
|
|
|
|
| 749 |
|
| 750 |
|
| 751 |
@app.cell(hide_code=True)
|
| 752 |
+
def _(mo) -> None:
|
| 753 |
mo.md(
|
| 754 |
r"""
|
| 755 |
# Formal implementation of Applicative
|
|
|
|
| 757 |
Now, we can give the formal implementation of `Applicative`
|
| 758 |
"""
|
| 759 |
)
|
|
|
|
| 760 |
|
| 761 |
|
| 762 |
@app.cell
|
|
|
|
| 777 |
@abstractmethod
|
| 778 |
def pure(cls, a: A) -> "Applicative[A]":
|
| 779 |
"""Lift a value into the Structure."""
|
| 780 |
+
msg = "Subclasses must implement pure"
|
| 781 |
+
raise NotImplementedError(msg)
|
| 782 |
|
| 783 |
@classmethod
|
| 784 |
@abstractmethod
|
|
|
|
| 786 |
cls, fg: "Applicative[Callable[[A], B]]", fa: "Applicative[A]"
|
| 787 |
) -> "Applicative[B]":
|
| 788 |
"""Sequential application."""
|
| 789 |
+
msg = "Subclasses must implement apply"
|
| 790 |
+
raise NotImplementedError(msg)
|
| 791 |
|
| 792 |
@classmethod
|
| 793 |
def lift(cls, f: Callable, *args: "Applicative") -> "Applicative":
|
|
|
|
| 817 |
return cls.pure([])
|
| 818 |
|
| 819 |
return cls.apply(
|
| 820 |
+
cls.fmap(lambda v: lambda vs: [v, *vs], fas[0]),
|
| 821 |
cls.sequenceL(fas[1:]),
|
| 822 |
)
|
| 823 |
|
|
|
|
| 852 |
return cls.lift(lambda a: lambda f: f(a), fa, fg)
|
| 853 |
|
| 854 |
@classmethod
|
| 855 |
+
def check_identity(cls, fa: "Applicative[A]") -> bool:
|
| 856 |
if cls.lift(id, fa) != fa:
|
| 857 |
+
msg = "Instance violates identity law"
|
| 858 |
+
raise ValueError(msg)
|
| 859 |
return True
|
| 860 |
|
| 861 |
@classmethod
|
| 862 |
+
def check_homomorphism(cls, a: A, f: Callable[[A], B]) -> bool:
|
| 863 |
if cls.lift(f, cls.pure(a)) != cls.pure(f(a)):
|
| 864 |
+
msg = "Instance violates homomorphism law"
|
| 865 |
+
raise ValueError(msg)
|
| 866 |
return True
|
| 867 |
|
| 868 |
@classmethod
|
| 869 |
+
def check_interchange(cls, a: A, fg: "Applicative[Callable[[A], B]]") -> bool:
|
| 870 |
if cls.apply(fg, cls.pure(a)) != cls.lift(lambda g: g(a), fg):
|
| 871 |
+
msg = "Instance violates interchange law"
|
| 872 |
+
raise ValueError(msg)
|
| 873 |
return True
|
| 874 |
|
| 875 |
@classmethod
|
|
|
|
| 878 |
fg: "Applicative[Callable[[B], C]]",
|
| 879 |
fh: "Applicative[Callable[[A], B]]",
|
| 880 |
fa: "Applicative[A]",
|
| 881 |
+
) -> bool:
|
| 882 |
if cls.apply(fg, cls.apply(fh, fa)) != cls.lift(compose, fg, fh, fa):
|
| 883 |
+
msg = "Instance violates composition law"
|
| 884 |
+
raise ValueError(msg)
|
| 885 |
return True
|
| 886 |
return (Applicative,)
|
| 887 |
|
| 888 |
|
| 889 |
@app.cell(hide_code=True)
|
| 890 |
+
def _(mo) -> None:
|
| 891 |
mo.md(
|
| 892 |
r"""
|
| 893 |
# Effectful programming
|
|
|
|
| 897 |
The arguments are no longer just plain values but may also have effects, such as the possibility of failure, having many ways to succeed, or performing input/output actions. In this manner, applicative functors can also be viewed as abstracting the idea of **applying pure functions to effectful arguments**, with the precise form of effects that are permitted depending on the nature of the underlying functor.
|
| 898 |
"""
|
| 899 |
)
|
|
|
|
| 900 |
|
| 901 |
|
| 902 |
@app.cell(hide_code=True)
|
| 903 |
+
def _(mo) -> None:
|
| 904 |
mo.md(
|
| 905 |
r"""
|
| 906 |
## The IO Applicative
|
|
|
|
| 909 |
|
| 910 |
As before, we first abstract how `pure` and `apply` should function.
|
| 911 |
|
| 912 |
+
- `pure` should wrap the object in an IO action, and make the object *callable* if it's not because we want to perform the action later:
|
| 913 |
|
| 914 |
```haskell
|
| 915 |
IO.pure(1) => IO(effect=lambda: 1)
|
|
|
|
| 921 |
The implementation is:
|
| 922 |
"""
|
| 923 |
)
|
|
|
|
| 924 |
|
| 925 |
|
| 926 |
@app.cell
|
|
|
|
| 943 |
|
| 944 |
|
| 945 |
@app.cell(hide_code=True)
|
| 946 |
+
def _(mo) -> None:
|
| 947 |
mo.md(r"""For example, a function that reads a given number of lines from the keyboard can be defined in applicative style as follows:""")
|
|
|
|
| 948 |
|
| 949 |
|
| 950 |
@app.cell
|
| 951 |
def _(IO):
|
| 952 |
def get_chars(n: int = 3):
|
| 953 |
+
return IO.sequenceL([
|
| 954 |
+
IO.pure(input(f"input the {i}th str")) for i in range(1, n + 1)
|
| 955 |
+
])
|
| 956 |
return (get_chars,)
|
| 957 |
|
| 958 |
|
| 959 |
@app.cell
|
| 960 |
+
def _() -> None:
|
| 961 |
# get_chars()()
|
| 962 |
return
|
| 963 |
|
| 964 |
|
| 965 |
@app.cell(hide_code=True)
|
| 966 |
+
def _(mo) -> None:
|
| 967 |
mo.md(r"""# From the perspective of category theory""")
|
|
|
|
| 968 |
|
| 969 |
|
| 970 |
@app.cell(hide_code=True)
|
| 971 |
+
def _(mo) -> None:
|
| 972 |
mo.md(
|
| 973 |
r"""
|
| 974 |
## Lax Monoidal Functor
|
|
|
|
| 976 |
An alternative, equivalent formulation of `Applicative` is given by
|
| 977 |
"""
|
| 978 |
)
|
|
|
|
| 979 |
|
| 980 |
|
| 981 |
@app.cell
|
|
|
|
| 997 |
|
| 998 |
|
| 999 |
@app.cell(hide_code=True)
|
| 1000 |
+
def _(mo) -> None:
|
| 1001 |
mo.md(
|
| 1002 |
r"""
|
| 1003 |
+
Intuitively, this states that a *monoidal functor* is one which has some sort of "default shape" and which supports some sort of "combining" operation.
|
| 1004 |
|
| 1005 |
- `unit` provides the identity element
|
| 1006 |
- `tensor` combines two contexts into a product context
|
|
|
|
| 1008 |
More technically, the idea is that `monoidal functor` preserves the "monoidal structure" given by the pairing constructor `(,)` and unit type `()`.
|
| 1009 |
"""
|
| 1010 |
)
|
|
|
|
| 1011 |
|
| 1012 |
|
| 1013 |
@app.cell(hide_code=True)
|
| 1014 |
+
def _(mo) -> None:
|
| 1015 |
mo.md(
|
| 1016 |
r"""
|
| 1017 |
+
Furthermore, to deserve the name "monoidal", instances of Monoidal ought to satisfy the following laws, which seem much more straightforward than the traditional Applicative laws:
|
| 1018 |
|
| 1019 |
- Left identity
|
| 1020 |
|
|
|
|
| 1029 |
`tensor(u, tensor(v, w)) ≅ tensor(tensor(u, v), w)`
|
| 1030 |
"""
|
| 1031 |
)
|
|
|
|
| 1032 |
|
| 1033 |
|
| 1034 |
@app.cell(hide_code=True)
|
| 1035 |
+
def _(mo) -> None:
|
| 1036 |
mo.md(
|
| 1037 |
r"""
|
| 1038 |
/// admonition | ≅ indicates isomorphism
|
|
|
|
| 1044 |
///
|
| 1045 |
"""
|
| 1046 |
)
|
|
|
|
| 1047 |
|
| 1048 |
|
| 1049 |
@app.cell(hide_code=True)
|
| 1050 |
+
def _(mo) -> None:
|
| 1051 |
mo.md(
|
| 1052 |
r"""
|
| 1053 |
## Mutual definability of Monoidal and Applicative
|
|
|
|
| 1065 |
```
|
| 1066 |
"""
|
| 1067 |
)
|
|
|
|
| 1068 |
|
| 1069 |
|
| 1070 |
@app.cell(hide_code=True)
|
| 1071 |
+
def _(mo) -> None:
|
| 1072 |
mo.md(
|
| 1073 |
r"""
|
| 1074 |
## Instance: ListMonoidal
|
|
|
|
| 1084 |
The implementation is:
|
| 1085 |
"""
|
| 1086 |
)
|
|
|
|
| 1087 |
|
| 1088 |
|
| 1089 |
@app.cell
|
|
|
|
| 1111 |
|
| 1112 |
|
| 1113 |
@app.cell(hide_code=True)
|
| 1114 |
+
def _(mo) -> None:
|
| 1115 |
mo.md(r"""> try with `ListMonoidal` below""")
|
|
|
|
| 1116 |
|
| 1117 |
|
| 1118 |
@app.cell
|
|
|
|
| 1124 |
|
| 1125 |
|
| 1126 |
@app.cell(hide_code=True)
|
| 1127 |
+
def _(mo) -> None:
|
| 1128 |
mo.md(r"""and we can prove that `tensor(fa, fb) = lift(lambda fa: lambda fb: (fa, fb), fa, fb)`:""")
|
|
|
|
| 1129 |
|
| 1130 |
|
| 1131 |
@app.cell
|
| 1132 |
+
def _(List, xs, ys) -> None:
|
| 1133 |
List.lift(lambda fa: lambda fb: (fa, fb), List(xs.items), List(ys.items))
|
|
|
|
| 1134 |
|
| 1135 |
|
| 1136 |
@app.cell(hide_code=True)
|
|
|
|
| 1140 |
@classmethod
|
| 1141 |
@abstractmethod
|
| 1142 |
def fmap(cls, f: Callable[[A], B], a: "Functor[A]") -> "Functor[B]":
|
| 1143 |
+
msg = "Subclasses must implement fmap"
|
| 1144 |
+
raise NotImplementedError(msg)
|
| 1145 |
|
| 1146 |
@classmethod
|
| 1147 |
def const(cls, a: "Functor[A]", b: B) -> "Functor[B]":
|
|
|
|
| 1161 |
|
| 1162 |
@app.cell(hide_code=True)
|
| 1163 |
def _():
|
|
|
|
| 1164 |
from abc import ABC, abstractmethod
|
|
|
|
| 1165 |
from collections.abc import Callable
|
| 1166 |
+
from dataclasses import dataclass
|
| 1167 |
+
from typing import TypeVar, Union
|
| 1168 |
return ABC, Callable, TypeVar, Union, abstractmethod, dataclass
|
| 1169 |
|
| 1170 |
|
|
|
|
| 1183 |
|
| 1184 |
|
| 1185 |
@app.cell(hide_code=True)
|
| 1186 |
+
def _(mo) -> None:
|
| 1187 |
+
mo.md(
|
| 1188 |
+
r"""
|
| 1189 |
+
# From Applicative to Alternative
|
| 1190 |
+
|
| 1191 |
+
## Abstracting Alternative
|
| 1192 |
+
|
| 1193 |
+
In our studies so far, we saw that both `Maybe` and `List` can represent computations with a varying number of results.
|
| 1194 |
+
|
| 1195 |
+
We use `Maybe` to indicate a computation can fail somehow and `List` for computations that can have many possible results. In both of these cases, one useful operation is amalgamating all possible results from multiple computations into a single computation.
|
| 1196 |
+
|
| 1197 |
+
`Alternative` formalizes computations that support:
|
| 1198 |
+
|
| 1199 |
+
- **Failure** (empty result)
|
| 1200 |
+
- **Choice** (combination of results)
|
| 1201 |
+
- **Repetition** (multiple results)
|
| 1202 |
+
|
| 1203 |
+
It extends `Applicative` with monoidal structure, where:
|
| 1204 |
+
|
| 1205 |
+
```python
|
| 1206 |
+
@dataclass
|
| 1207 |
+
class Alternative[A](Applicative, ABC):
|
| 1208 |
+
@classmethod
|
| 1209 |
+
@abstractmethod
|
| 1210 |
+
def empty(cls) -> "Alternative[A]":
|
| 1211 |
+
'''Identity element for alternative computations'''
|
| 1212 |
+
|
| 1213 |
+
@classmethod
|
| 1214 |
+
@abstractmethod
|
| 1215 |
+
def alt(
|
| 1216 |
+
cls, fa: "Alternative[A]", fb: "Alternative[A]"
|
| 1217 |
+
) -> "Alternative[A]":
|
| 1218 |
+
'''Binary operation combining computations'''
|
| 1219 |
+
```
|
| 1220 |
+
|
| 1221 |
+
- `empty` is the identity element (e.g., `Maybe(None)`, `List([])`)
|
| 1222 |
+
- `alt` is a combination operator (e.g., `Maybe` fallback, list concatenation)
|
| 1223 |
+
|
| 1224 |
+
`empty` and `alt` should satisfy the following **laws**:
|
| 1225 |
+
|
| 1226 |
+
```python
|
| 1227 |
+
# Left identity
|
| 1228 |
+
alt(empty, fa) == fa
|
| 1229 |
+
# Right identity
|
| 1230 |
+
alt(fa, empty) == fa
|
| 1231 |
+
# Associativity
|
| 1232 |
+
alt(fa, alt(fb, fc)) == alt(alt(fa, fb), fc)
|
| 1233 |
+
```
|
| 1234 |
+
|
| 1235 |
+
/// admonition
|
| 1236 |
+
Actually, `Alternative` is a *monoid* on `Applicative Functors`. We will talk about *monoid* and review these laws in the next notebook about `Monads`.
|
| 1237 |
+
///
|
| 1238 |
+
|
| 1239 |
+
/// attention | minimal implementation requirement
|
| 1240 |
+
- `empty`
|
| 1241 |
+
- `alt`
|
| 1242 |
+
///
|
| 1243 |
+
"""
|
| 1244 |
+
)
|
| 1245 |
+
|
| 1246 |
+
|
| 1247 |
+
@app.cell(hide_code=True)
|
| 1248 |
+
def _(mo) -> None:
|
| 1249 |
+
mo.md(
|
| 1250 |
+
r"""
|
| 1251 |
+
## Instances of Alternative
|
| 1252 |
+
|
| 1253 |
+
### The Maybe Alternative
|
| 1254 |
+
|
| 1255 |
+
- `empty`: the identity element of `Maybe` is `Maybe(None)`
|
| 1256 |
+
- `alt`: return the first element if it's not `None`, else return the second element
|
| 1257 |
+
"""
|
| 1258 |
+
)
|
| 1259 |
+
|
| 1260 |
+
|
| 1261 |
+
@app.cell
|
| 1262 |
+
def _(Alternative, Maybe, dataclass):
|
| 1263 |
+
@dataclass
|
| 1264 |
+
class AltMaybe[A](Maybe, Alternative):
|
| 1265 |
+
@classmethod
|
| 1266 |
+
def empty(cls) -> "AltMaybe[A]":
|
| 1267 |
+
return cls(None)
|
| 1268 |
+
|
| 1269 |
+
@classmethod
|
| 1270 |
+
def alt(cls, fa: "AltMaybe[A]", fb: "AltMaybe[A]") -> "AltMaybe[A]":
|
| 1271 |
+
if fa.value is not None:
|
| 1272 |
+
return cls(fa.value)
|
| 1273 |
+
return cls(fb.value)
|
| 1274 |
+
|
| 1275 |
+
def __repr__(self):
|
| 1276 |
+
return "Nothing" if self.value is None else f"Just({self.value!r})"
|
| 1277 |
+
return (AltMaybe,)
|
| 1278 |
+
|
| 1279 |
+
|
| 1280 |
+
@app.cell
|
| 1281 |
+
def _(AltMaybe) -> None:
|
| 1282 |
+
print(AltMaybe.empty())
|
| 1283 |
+
print(AltMaybe.alt(AltMaybe(None), AltMaybe(1)))
|
| 1284 |
+
print(AltMaybe.alt(AltMaybe(None), AltMaybe(None)))
|
| 1285 |
+
print(AltMaybe.alt(AltMaybe(1), AltMaybe(None)))
|
| 1286 |
+
print(AltMaybe.alt(AltMaybe(1), AltMaybe(2)))
|
| 1287 |
+
|
| 1288 |
+
|
| 1289 |
+
@app.cell
|
| 1290 |
+
def _(AltMaybe) -> None:
|
| 1291 |
+
print(AltMaybe.check_left_identity(AltMaybe(1)))
|
| 1292 |
+
print(AltMaybe.check_right_identity(AltMaybe(1)))
|
| 1293 |
+
print(AltMaybe.check_associativity(AltMaybe(1), AltMaybe(2), AltMaybe(None)))
|
| 1294 |
+
|
| 1295 |
+
|
| 1296 |
+
@app.cell(hide_code=True)
|
| 1297 |
+
def _(mo) -> None:
|
| 1298 |
+
mo.md(
|
| 1299 |
+
r"""
|
| 1300 |
+
### The List Alternative
|
| 1301 |
+
|
| 1302 |
+
- `empty`: the identity element of `List` is `List([])`
|
| 1303 |
+
- `alt`: return the concatenation of 2 input lists
|
| 1304 |
+
"""
|
| 1305 |
+
)
|
| 1306 |
+
|
| 1307 |
+
|
| 1308 |
+
@app.cell
|
| 1309 |
+
def _(Alternative, List, dataclass):
|
| 1310 |
+
@dataclass
|
| 1311 |
+
class AltList[A](List, Alternative):
|
| 1312 |
+
@classmethod
|
| 1313 |
+
def empty(cls) -> "AltList[A]":
|
| 1314 |
+
return cls([])
|
| 1315 |
+
|
| 1316 |
+
@classmethod
|
| 1317 |
+
def alt(cls, fa: "AltList[A]", fb: "AltList[A]") -> "AltList[A]":
|
| 1318 |
+
return cls(fa.value + fb.value)
|
| 1319 |
+
return (AltList,)
|
| 1320 |
+
|
| 1321 |
+
|
| 1322 |
+
@app.cell
|
| 1323 |
+
def _(AltList) -> None:
|
| 1324 |
+
print(AltList.empty())
|
| 1325 |
+
print(AltList.alt(AltList([1, 2, 3]), AltList([4, 5])))
|
| 1326 |
+
|
| 1327 |
+
|
| 1328 |
+
@app.cell
|
| 1329 |
+
def _(AltList) -> None:
|
| 1330 |
+
AltList([1])
|
| 1331 |
+
|
| 1332 |
+
|
| 1333 |
+
@app.cell
|
| 1334 |
+
def _(AltList) -> None:
|
| 1335 |
+
AltList([1])
|
| 1336 |
+
|
| 1337 |
+
|
| 1338 |
+
@app.cell
|
| 1339 |
+
def _(AltList) -> None:
|
| 1340 |
+
print(AltList.check_left_identity(AltList([1, 2, 3])))
|
| 1341 |
+
print(AltList.check_right_identity(AltList([1, 2, 3])))
|
| 1342 |
+
print(
|
| 1343 |
+
AltList.check_associativity(
|
| 1344 |
+
AltList([1, 2]), AltList([3, 4, 5]), AltList([6])
|
| 1345 |
+
)
|
| 1346 |
+
)
|
| 1347 |
+
|
| 1348 |
+
|
| 1349 |
+
@app.cell(hide_code=True)
|
| 1350 |
+
def _(mo) -> None:
|
| 1351 |
+
mo.md(
|
| 1352 |
+
r"""
|
| 1353 |
+
## some and many
|
| 1354 |
+
|
| 1355 |
+
|
| 1356 |
+
/// admonition | This section mainly refers to
|
| 1357 |
+
|
| 1358 |
+
- https://stackoverflow.com/questions/7671009/some-and-many-functions-from-the-alternative-type-class/7681283#7681283
|
| 1359 |
+
|
| 1360 |
+
///
|
| 1361 |
+
|
| 1362 |
+
First let's have a look at the implementation of `some` and `many`:
|
| 1363 |
+
|
| 1364 |
+
```python
|
| 1365 |
+
@classmethod
|
| 1366 |
+
def some(cls, fa: "Alternative[A]") -> "Alternative[list[A]]":
|
| 1367 |
+
# Short-circuit if input is empty
|
| 1368 |
+
if fa == cls.empty():
|
| 1369 |
+
return cls.empty()
|
| 1370 |
+
|
| 1371 |
+
return cls.apply(
|
| 1372 |
+
cls.fmap(lambda a: lambda b: [a] + b, fa), cls.many(fa)
|
| 1373 |
+
)
|
| 1374 |
+
|
| 1375 |
+
@classmethod
|
| 1376 |
+
def many(cls, fa: "Alternative[A]") -> "Alternative[list[A]]":
|
| 1377 |
+
# Directly return empty list if input is empty
|
| 1378 |
+
if fa == cls.empty():
|
| 1379 |
+
return cls.pure([])
|
| 1380 |
+
|
| 1381 |
+
return cls.alt(cls.some(fa), cls.pure([]))
|
| 1382 |
+
```
|
| 1383 |
+
|
| 1384 |
+
So `some f` runs `f` once, then *many* times, and conses the results. `many f` runs f *some* times, or *alternatively* just returns the empty list.
|
| 1385 |
+
|
| 1386 |
+
The idea is that they both run `f` as often as possible until it **fails**, collecting the results in a list. The difference is that `some f` immediately fails if `f` fails, while `many f` will still succeed and *return* the empty list in such a case. But what all this exactly means depends on how `alt` is defined.
|
| 1387 |
+
|
| 1388 |
+
Let's see what it does for the instances `AltMaybe` and `AltList`.
|
| 1389 |
+
"""
|
| 1390 |
+
)
|
| 1391 |
+
|
| 1392 |
+
|
| 1393 |
+
@app.cell(hide_code=True)
|
| 1394 |
+
def _(mo) -> None:
|
| 1395 |
+
mo.md(r"""For `AltMaybe`. `None` means failure, so some `None` fails as well and evaluates to `None` while many `None` succeeds and evaluates to `Just []`. Both `some (Just ())` and `many (Just ())` never return, because `Just ()` never fails.""")
|
| 1396 |
+
|
| 1397 |
+
|
| 1398 |
+
@app.cell
|
| 1399 |
+
def _(AltMaybe) -> None:
|
| 1400 |
+
print(AltMaybe.some(AltMaybe.empty()))
|
| 1401 |
+
print(AltMaybe.many(AltMaybe.empty()))
|
| 1402 |
+
|
| 1403 |
+
|
| 1404 |
+
@app.cell(hide_code=True)
|
| 1405 |
+
def _(mo) -> None:
|
| 1406 |
+
mo.md(r"""For `AltList`, `[]` means failure, so `some []` evaluates to `[]` (no answers) while `many []` evaluates to `[[]]` (there's one answer and it is the empty list). Again `some [()]` and `many [()]` don't return.""")
|
| 1407 |
+
|
| 1408 |
+
|
| 1409 |
+
@app.cell
|
| 1410 |
+
def _(AltList) -> None:
|
| 1411 |
+
print(AltList.some(AltList.empty()))
|
| 1412 |
+
print(AltList.many(AltList.empty()))
|
| 1413 |
+
|
| 1414 |
+
|
| 1415 |
+
@app.cell(hide_code=True)
|
| 1416 |
+
def _(mo) -> None:
|
| 1417 |
+
mo.md(r"""## Formal implementation of Alternative""")
|
| 1418 |
+
|
| 1419 |
+
|
| 1420 |
+
@app.cell
|
| 1421 |
+
def _(ABC, Applicative, abstractmethod, dataclass):
|
| 1422 |
+
@dataclass
|
| 1423 |
+
class Alternative[A](Applicative, ABC):
|
| 1424 |
+
"""A monoid on applicative functors."""
|
| 1425 |
+
|
| 1426 |
+
@classmethod
|
| 1427 |
+
@abstractmethod
|
| 1428 |
+
def empty(cls) -> "Alternative[A]":
|
| 1429 |
+
msg = "Subclasses must implement empty"
|
| 1430 |
+
raise NotImplementedError(msg)
|
| 1431 |
+
|
| 1432 |
+
@classmethod
|
| 1433 |
+
@abstractmethod
|
| 1434 |
+
def alt(
|
| 1435 |
+
cls, fa: "Alternative[A]", fb: "Alternative[A]"
|
| 1436 |
+
) -> "Alternative[A]":
|
| 1437 |
+
msg = "Subclasses must implement alt"
|
| 1438 |
+
raise NotImplementedError(msg)
|
| 1439 |
+
|
| 1440 |
+
@classmethod
|
| 1441 |
+
def some(cls, fa: "Alternative[A]") -> "Alternative[list[A]]":
|
| 1442 |
+
# Short-circuit if input is empty
|
| 1443 |
+
if fa == cls.empty():
|
| 1444 |
+
return cls.empty()
|
| 1445 |
+
|
| 1446 |
+
return cls.apply(
|
| 1447 |
+
cls.fmap(lambda a: lambda b: [a, *b], fa), cls.many(fa)
|
| 1448 |
+
)
|
| 1449 |
+
|
| 1450 |
+
@classmethod
|
| 1451 |
+
def many(cls, fa: "Alternative[A]") -> "Alternative[list[A]]":
|
| 1452 |
+
# Directly return empty list if input is empty
|
| 1453 |
+
if fa == cls.empty():
|
| 1454 |
+
return cls.pure([])
|
| 1455 |
+
|
| 1456 |
+
return cls.alt(cls.some(fa), cls.pure([]))
|
| 1457 |
+
|
| 1458 |
+
@classmethod
|
| 1459 |
+
def check_left_identity(cls, fa: "Alternative[A]") -> bool:
|
| 1460 |
+
return cls.alt(cls.empty(), fa) == fa
|
| 1461 |
+
|
| 1462 |
+
@classmethod
|
| 1463 |
+
def check_right_identity(cls, fa: "Alternative[A]") -> bool:
|
| 1464 |
+
return cls.alt(fa, cls.empty()) == fa
|
| 1465 |
+
|
| 1466 |
+
@classmethod
|
| 1467 |
+
def check_associativity(
|
| 1468 |
+
cls, fa: "Alternative[A]", fb: "Alternative[A]", fc: "Alternative[A]"
|
| 1469 |
+
) -> bool:
|
| 1470 |
+
return cls.alt(fa, cls.alt(fb, fc)) == cls.alt(cls.alt(fa, fb), fc)
|
| 1471 |
+
return (Alternative,)
|
| 1472 |
+
|
| 1473 |
+
|
| 1474 |
+
@app.cell(hide_code=True)
|
| 1475 |
+
def _(mo) -> None:
|
| 1476 |
+
mo.md(
|
| 1477 |
+
r"""
|
| 1478 |
+
/// admonition
|
| 1479 |
+
|
| 1480 |
+
We will explore more about `Alternative` in a future notebooks about [Monadic Parsing](https://www.cambridge.org/core/journals/journal-of-functional-programming/article/monadic-parsing-in-haskell/E557DFCCE00E0D4B6ED02F3FB0466093)
|
| 1481 |
+
|
| 1482 |
+
///
|
| 1483 |
+
"""
|
| 1484 |
+
)
|
| 1485 |
+
|
| 1486 |
+
|
| 1487 |
+
@app.cell(hide_code=True)
|
| 1488 |
+
def _(mo) -> None:
|
| 1489 |
mo.md(
|
| 1490 |
r"""
|
| 1491 |
# Further reading
|
|
|
|
| 1508 |
- [Applicative Functors](https://bartoszmilewski.com/2017/02/06/applicative-functors/)
|
| 1509 |
"""
|
| 1510 |
)
|
|
|
|
| 1511 |
|
| 1512 |
|
| 1513 |
if __name__ == "__main__":
|
functional_programming/CHANGELOG.md
CHANGED
|
@@ -1,47 +1,65 @@
|
|
| 1 |
# Changelog of the functional-programming course
|
| 2 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
## 2025-04-11
|
| 4 |
|
| 5 |
**functors.py**
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
|
|
|
| 9 |
|
| 10 |
## 2025-04-08
|
| 11 |
|
| 12 |
**functors.py**
|
| 13 |
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
+ add `unzip` utility function for functors
|
| 19 |
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
## 2025-04-07
|
| 22 |
|
| 23 |
**applicatives.py**
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
## 2025-04-06
|
| 33 |
|
| 34 |
**applicatives.py**
|
| 35 |
|
| 36 |
-
- remove `sequenceL` from `Applicative` because it should be a classmethod but can't be
|
|
|
|
| 37 |
|
| 38 |
## 2025-04-02
|
| 39 |
|
| 40 |
**functors.py**
|
| 41 |
|
| 42 |
-
|
| 43 |
|
| 44 |
-
|
| 45 |
|
| 46 |
```python
|
| 47 |
class Functor(Generic[A])
|
|
@@ -55,18 +73,18 @@
|
|
| 55 |
|
| 56 |
for conciseness
|
| 57 |
|
| 58 |
-
|
| 59 |
|
| 60 |
**applicatives.py**
|
| 61 |
|
| 62 |
-
|
| 63 |
|
| 64 |
## 2025-03-16
|
| 65 |
|
| 66 |
**functors.py**
|
| 67 |
|
| 68 |
-
|
| 69 |
-
|
| 70 |
|
| 71 |
For example:
|
| 72 |
|
|
@@ -83,21 +101,24 @@
|
|
| 83 |
Wrapper(value=2)
|
| 84 |
```
|
| 85 |
|
| 86 |
-
|
|
|
|
| 87 |
- Rename `ListWrapper` to `List` for simplicity
|
| 88 |
- Remove the `Just` class
|
| 89 |
-
|
|
|
|
| 90 |
|
| 91 |
## 2025-03-13
|
| 92 |
|
| 93 |
**functors.py**
|
| 94 |
|
| 95 |
-
|
| 96 |
|
| 97 |
-
Thank [Akshay](https://github.com/akshayka) and [Haleshot](https://github.com/Haleshot)
|
|
|
|
| 98 |
|
| 99 |
## 2025-03-11
|
| 100 |
|
| 101 |
**functors.py**
|
| 102 |
|
| 103 |
-
|
|
|
|
| 1 |
# Changelog of the functional-programming course
|
| 2 |
|
| 3 |
+
## 2025-04-16
|
| 4 |
+
|
| 5 |
+
**applicatives.py**
|
| 6 |
+
|
| 7 |
+
- replace `return NotImplementedError` with `raise NotImplementedError`
|
| 8 |
+
|
| 9 |
+
- add `Either` applicative
|
| 10 |
+
- Add `Alternative`
|
| 11 |
+
|
| 12 |
## 2025-04-11
|
| 13 |
|
| 14 |
**functors.py**
|
| 15 |
|
| 16 |
+
- add `Bifunctor` section
|
| 17 |
+
|
| 18 |
+
- replace `return NotImplementedError` with `raise NotImplementedError`
|
| 19 |
|
| 20 |
## 2025-04-08
|
| 21 |
|
| 22 |
**functors.py**
|
| 23 |
|
| 24 |
+
- restructure the notebook
|
| 25 |
+
- replace `f` in the function signatures with `g` to indicate regular functions and
|
| 26 |
+
distinguish from functors
|
| 27 |
+
- move `Maybe` funtor to section `More Functor instances`
|
|
|
|
| 28 |
|
| 29 |
+
- add `Either` functor
|
| 30 |
+
|
| 31 |
+
- add `unzip` utility function for functors
|
| 32 |
|
| 33 |
## 2025-04-07
|
| 34 |
|
| 35 |
**applicatives.py**
|
| 36 |
|
| 37 |
+
- the `apply` method of `Maybe` _Applicative_ should return `None` when `fg` or `fa` is
|
| 38 |
+
`None`
|
| 39 |
+
|
| 40 |
+
- add `sequenceL` as a classmethod for `Applicative` and add examples for `Wrapper`,
|
| 41 |
+
`Maybe`, `List`
|
| 42 |
+
- add description for utility functions of `Applicative`
|
| 43 |
+
|
| 44 |
+
- refine the implementation of `IO` _Applicative_
|
| 45 |
+
- reimplement `get_chars` with `IO.sequenceL`
|
| 46 |
+
|
| 47 |
+
- add an example to show that `ListMonoidal` is equivalent to `List` _Applicative_
|
| 48 |
|
| 49 |
## 2025-04-06
|
| 50 |
|
| 51 |
**applicatives.py**
|
| 52 |
|
| 53 |
+
- remove `sequenceL` from `Applicative` because it should be a classmethod but can't be
|
| 54 |
+
generically implemented
|
| 55 |
|
| 56 |
## 2025-04-02
|
| 57 |
|
| 58 |
**functors.py**
|
| 59 |
|
| 60 |
+
- Migrate to `python3.13`
|
| 61 |
|
| 62 |
+
- Replace all occurrences of
|
| 63 |
|
| 64 |
```python
|
| 65 |
class Functor(Generic[A])
|
|
|
|
| 73 |
|
| 74 |
for conciseness
|
| 75 |
|
| 76 |
+
- Use `fa` in function signatures instead of `a` when `fa` is a _Functor_
|
| 77 |
|
| 78 |
**applicatives.py**
|
| 79 |
|
| 80 |
+
- `0.1.0` version of notebook `06_applicatives.py`
|
| 81 |
|
| 82 |
## 2025-03-16
|
| 83 |
|
| 84 |
**functors.py**
|
| 85 |
|
| 86 |
+
- Use uppercased letters for `Generic` types, e.g. `A = TypeVar("A")`
|
| 87 |
+
- Refactor the `Functor` class, changing `fmap` and utility methods to `classmethod`
|
| 88 |
|
| 89 |
For example:
|
| 90 |
|
|
|
|
| 101 |
Wrapper(value=2)
|
| 102 |
```
|
| 103 |
|
| 104 |
+
- Move the `check_functor_law` method from `Functor` class to a standard function
|
| 105 |
+
|
| 106 |
- Rename `ListWrapper` to `List` for simplicity
|
| 107 |
- Remove the `Just` class
|
| 108 |
+
|
| 109 |
+
- Rewrite proofs
|
| 110 |
|
| 111 |
## 2025-03-13
|
| 112 |
|
| 113 |
**functors.py**
|
| 114 |
|
| 115 |
+
- `0.1.0` version of notebook `05_functors`
|
| 116 |
|
| 117 |
+
Thank [Akshay](https://github.com/akshayka) and [Haleshot](https://github.com/Haleshot)
|
| 118 |
+
for reviewing
|
| 119 |
|
| 120 |
## 2025-03-11
|
| 121 |
|
| 122 |
**functors.py**
|
| 123 |
|
| 124 |
+
- Demo version of notebook `05_functors.py`
|