Spaces:
Running
Running
Merge pull request #104 from jesshart/tutorial-dataframe-transformer
Browse files
polars/06_Dataframe_Transformer.py
ADDED
|
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# dependencies = [
|
| 3 |
+
# "marimo",
|
| 4 |
+
# "numpy==2.2.3",
|
| 5 |
+
# "plotly[express]==6.0.0",
|
| 6 |
+
# "polars==1.28.1",
|
| 7 |
+
# "requests==2.32.3",
|
| 8 |
+
# ]
|
| 9 |
+
# [tool.marimo.runtime]
|
| 10 |
+
# auto_instantiate = false
|
| 11 |
+
# ///
|
| 12 |
+
|
| 13 |
+
import marimo
|
| 14 |
+
|
| 15 |
+
__generated_with = "0.14.10"
|
| 16 |
+
app = marimo.App(width="medium")
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
@app.cell(hide_code=True)
|
| 20 |
+
def _(mo):
|
| 21 |
+
mo.md(
|
| 22 |
+
r"""
|
| 23 |
+
# Polars with Marimo's Dataframe Transformer
|
| 24 |
+
|
| 25 |
+
*By [jesshart](https://github.com/jesshart)*
|
| 26 |
+
|
| 27 |
+
The goal of this notebook is to explore Marimo's data explore capabilities alonside the power of polars. Feel free to reference the latest about these Marimo features here: https://docs.marimo.io/guides/working_with_data/dataframes/?h=dataframe#transforming-dataframes
|
| 28 |
+
"""
|
| 29 |
+
)
|
| 30 |
+
return
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
@app.cell
|
| 34 |
+
def _(requests):
|
| 35 |
+
json_data = requests.get(
|
| 36 |
+
"https://raw.githubusercontent.com/jesshart/fake-datasets/refs/heads/main/orders.json"
|
| 37 |
+
)
|
| 38 |
+
return (json_data,)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
@app.cell(hide_code=True)
|
| 42 |
+
def _(mo):
|
| 43 |
+
mo.md(
|
| 44 |
+
r"""
|
| 45 |
+
# Loading Data
|
| 46 |
+
Let's start by loading our data and getting into the `.lazy()` format so our transformations and queries are speedy.
|
| 47 |
+
|
| 48 |
+
Read more about `.lazy()` here: https://docs.pola.rs/user-guide/lazy/
|
| 49 |
+
"""
|
| 50 |
+
)
|
| 51 |
+
return
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
@app.cell
|
| 55 |
+
def _(json_data, pl):
|
| 56 |
+
demand: pl.LazyFrame = pl.read_json(json_data.content).lazy()
|
| 57 |
+
demand
|
| 58 |
+
return (demand,)
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
@app.cell(hide_code=True)
|
| 62 |
+
def _(mo):
|
| 63 |
+
mo.md(
|
| 64 |
+
r"""
|
| 65 |
+
Above, you will notice that when you reference the object as a standalone, you get out-of-the-box convenince from `marimo`. You have the `Table` and `Query Plan` options to choose from.
|
| 66 |
+
|
| 67 |
+
- 💡 Try out the `Table` view! You can click the `Preview data` button to get a quick view of your data.
|
| 68 |
+
- 💡 Take a look at the `Query plan`. Learn more about Polar's query plan here: https://docs.pola.rs/user-guide/lazy/query-plan/
|
| 69 |
+
"""
|
| 70 |
+
)
|
| 71 |
+
return
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
@app.cell(hide_code=True)
|
| 75 |
+
def _(mo):
|
| 76 |
+
mo.md(
|
| 77 |
+
r"""
|
| 78 |
+
## marimo's Native Dataframe UI
|
| 79 |
+
|
| 80 |
+
There are a few ways to leverage marimo's native dataframe UI. One is by doing what we saw above—by referencing a `pl.LazyFrame` directly. You can also try,
|
| 81 |
+
|
| 82 |
+
- Reference a `pl.LazyFrame` (we already did this!)
|
| 83 |
+
- Referencing a `pl.DataFrame` and see how it different from its corresponding lazy version
|
| 84 |
+
- Use `mo.ui.table`
|
| 85 |
+
- Use `mo.ui.dataframe`
|
| 86 |
+
"""
|
| 87 |
+
)
|
| 88 |
+
return
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@app.cell(hide_code=True)
|
| 92 |
+
def _(mo):
|
| 93 |
+
mo.md(
|
| 94 |
+
r"""
|
| 95 |
+
## Reference a `pl.DataFrame`
|
| 96 |
+
Let's reference the same frame as before, but this time as a `pl.DataFrame` by calling `.collect()` on it.
|
| 97 |
+
"""
|
| 98 |
+
)
|
| 99 |
+
return
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
@app.cell
|
| 103 |
+
def _(demand: "pl.LazyFrame"):
|
| 104 |
+
demand.collect()
|
| 105 |
+
return
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@app.cell(hide_code=True)
|
| 109 |
+
def _(mo):
|
| 110 |
+
mo.md(
|
| 111 |
+
r"""
|
| 112 |
+
Note how much functionality we have right out-of-the-box. Click on column names to see rich features like sorting, freezing, filtering, searching, and more!
|
| 113 |
+
|
| 114 |
+
Notice how `order_quantity` has a green bar chart under it indicating the ditribution of values for the field!
|
| 115 |
+
|
| 116 |
+
Don't miss the `Download` feature as well which supports downloading in CSV, json, or parquet format!
|
| 117 |
+
"""
|
| 118 |
+
)
|
| 119 |
+
return
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
@app.cell(hide_code=True)
|
| 123 |
+
def _(mo):
|
| 124 |
+
mo.md(
|
| 125 |
+
r"""
|
| 126 |
+
## Use `mo.ui.table`
|
| 127 |
+
The `mo.ui.table` allows you to select rows for use downstream. You can select the rows you want, and then use these as filtered rows downstream.
|
| 128 |
+
"""
|
| 129 |
+
)
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
|
| 133 |
+
@app.cell
|
| 134 |
+
def _(demand: "pl.LazyFrame", mo):
|
| 135 |
+
demand_table = mo.ui.table(demand, label="Demand Table")
|
| 136 |
+
return (demand_table,)
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
@app.cell
|
| 140 |
+
def _(demand_table):
|
| 141 |
+
demand_table
|
| 142 |
+
return
|
| 143 |
+
|
| 144 |
+
|
| 145 |
+
@app.cell(hide_code=True)
|
| 146 |
+
def _(mo):
|
| 147 |
+
mo.md(r"""I like to use this feature to select groupings based on summary statistics so I can quickly explore subsets of categories. Let me show you what I mean.""")
|
| 148 |
+
return
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
@app.cell
|
| 152 |
+
def _(demand: "pl.LazyFrame", pl):
|
| 153 |
+
summary: pl.LazyFrame = demand.group_by("product_family").agg(
|
| 154 |
+
pl.mean("order_quantity").alias("mean"),
|
| 155 |
+
pl.sum("order_quantity").alias("sum"),
|
| 156 |
+
pl.std("order_quantity").alias("std"),
|
| 157 |
+
pl.min("order_quantity").alias("min"),
|
| 158 |
+
pl.max("order_quantity").alias("max"),
|
| 159 |
+
pl.col("order_quantity").null_count().alias("null_count"),
|
| 160 |
+
)
|
| 161 |
+
return (summary,)
|
| 162 |
+
|
| 163 |
+
|
| 164 |
+
@app.cell
|
| 165 |
+
def _(mo, summary: "pl.LazyFrame"):
|
| 166 |
+
summary_table = mo.ui.table(summary)
|
| 167 |
+
return (summary_table,)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
@app.cell
|
| 171 |
+
def _(summary_table):
|
| 172 |
+
summary_table
|
| 173 |
+
return
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
@app.cell(hide_code=True)
|
| 177 |
+
def _(mo):
|
| 178 |
+
mo.md(
|
| 179 |
+
r"""
|
| 180 |
+
Now, instead of manually creating a filter for what I want to take a closer look at, I simply select from the ui and do a simple join to get that aggregated level with more detail.
|
| 181 |
+
|
| 182 |
+
The following cell uses the output of the `mo.ui.table` selection, selects its unique keys, and uses that to join for the selected subset of the original table.
|
| 183 |
+
"""
|
| 184 |
+
)
|
| 185 |
+
return
|
| 186 |
+
|
| 187 |
+
|
| 188 |
+
@app.cell
|
| 189 |
+
def _(demand: "pl.LazyFrame", pl, summary_table):
|
| 190 |
+
selection_keys: pl.LazyFrame = (
|
| 191 |
+
summary_table.value.lazy().select("product_family").unique()
|
| 192 |
+
)
|
| 193 |
+
selection: pl.lazyframe = selection_keys.join(
|
| 194 |
+
demand, on="product_family", how="left"
|
| 195 |
+
)
|
| 196 |
+
selection.collect()
|
| 197 |
+
return
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
@app.cell(hide_code=True)
|
| 201 |
+
def _(mo):
|
| 202 |
+
mo.md("""You can learn more about joins in Polars by checking out my other interactive notebook here: https://marimo.io/p/@jesshart/basic-polars-joins""")
|
| 203 |
+
return
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
@app.cell(hide_code=True)
|
| 207 |
+
def _(mo):
|
| 208 |
+
mo.md(r"""## Use `mo.ui.dataframe`""")
|
| 209 |
+
return
|
| 210 |
+
|
| 211 |
+
|
| 212 |
+
@app.cell
|
| 213 |
+
def _(demand: "pl.LazyFrame", mo):
|
| 214 |
+
demand_cached = demand.collect()
|
| 215 |
+
mo_dataframe = mo.ui.dataframe(demand_cached)
|
| 216 |
+
return demand_cached, mo_dataframe
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
@app.cell(hide_code=True)
|
| 220 |
+
def _(mo):
|
| 221 |
+
mo.md(r"""Below I simply call the object into view. We will play with it in the following cells.""")
|
| 222 |
+
return
|
| 223 |
+
|
| 224 |
+
|
| 225 |
+
@app.cell
|
| 226 |
+
def _(mo_dataframe):
|
| 227 |
+
mo_dataframe
|
| 228 |
+
return
|
| 229 |
+
|
| 230 |
+
|
| 231 |
+
@app.cell(hide_code=True)
|
| 232 |
+
def _(mo):
|
| 233 |
+
mo.md(r"""One way to group this data in polars code directly would be to group by product family to get the mean. This is how it is done in polars:""")
|
| 234 |
+
return
|
| 235 |
+
|
| 236 |
+
|
| 237 |
+
@app.cell
|
| 238 |
+
def _(demand_cached, pl):
|
| 239 |
+
demand_agg: pl.DataFrame = demand_cached.group_by("product_family").agg(
|
| 240 |
+
pl.mean("order_quantity").name.suffix("_mean")
|
| 241 |
+
)
|
| 242 |
+
demand_agg
|
| 243 |
+
return (demand_agg,)
|
| 244 |
+
|
| 245 |
+
|
| 246 |
+
@app.cell(hide_code=True)
|
| 247 |
+
def _(mo):
|
| 248 |
+
mo.md(
|
| 249 |
+
f"""
|
| 250 |
+
## Try Before You Buy
|
| 251 |
+
|
| 252 |
+
1. Now try to do the same summary using Marimo's `mo.ui.dataframe` object above. Also, note how your aggregated column is already renamed! Nice touch!
|
| 253 |
+
2. Try (1) again but use select statements first (This is actually better polars practice anyway since it reduces the frame as you move to aggregation.)
|
| 254 |
+
|
| 255 |
+
*When you are ready, check the `Python Code` tab at the top of the table to compare your output to the answer below.*
|
| 256 |
+
"""
|
| 257 |
+
)
|
| 258 |
+
return
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
@app.cell(hide_code=True)
|
| 262 |
+
def _():
|
| 263 |
+
mean_code = """
|
| 264 |
+
This may seem verbose compared to what I came up with, but quick and dirty outputs like this are really helpful for quickly exploring the data and learning the polars library at the same time.
|
| 265 |
+
```python
|
| 266 |
+
df_next = df
|
| 267 |
+
df_next = df_next.group_by(
|
| 268 |
+
[pl.col("product_family")], maintain_order=True
|
| 269 |
+
).agg(
|
| 270 |
+
[
|
| 271 |
+
pl.col("order_date").mean().alias("order_date_mean"),
|
| 272 |
+
pl.col("order_quantity").mean().alias("order_quantity_mean"),
|
| 273 |
+
pl.col("product").mean().alias("product_mean"),
|
| 274 |
+
]
|
| 275 |
+
)
|
| 276 |
+
```
|
| 277 |
+
"""
|
| 278 |
+
|
| 279 |
+
mean_again_code = """
|
| 280 |
+
```python
|
| 281 |
+
df_next = df
|
| 282 |
+
df_next = df_next.select(["product_family", "order_quantity"])
|
| 283 |
+
df_next = df_next.group_by(
|
| 284 |
+
[pl.col("product_family")], maintain_order=True
|
| 285 |
+
).agg(
|
| 286 |
+
[
|
| 287 |
+
pl.col("order_date").mean().alias("order_date_mean"),
|
| 288 |
+
pl.col("order_quantity").mean().alias("order_quantity_mean"),
|
| 289 |
+
pl.col("product").mean().alias("product_mean"),
|
| 290 |
+
]
|
| 291 |
+
)
|
| 292 |
+
```
|
| 293 |
+
"""
|
| 294 |
+
return mean_again_code, mean_code
|
| 295 |
+
|
| 296 |
+
|
| 297 |
+
@app.cell(hide_code=True)
|
| 298 |
+
def _(mean_again_code, mean_code, mo):
|
| 299 |
+
mo.accordion(
|
| 300 |
+
{
|
| 301 |
+
"Show Code (1)": mean_code,
|
| 302 |
+
"Show Code (2)": mean_again_code,
|
| 303 |
+
}
|
| 304 |
+
)
|
| 305 |
+
return
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
@app.cell
|
| 309 |
+
def _(demand_agg: "pl.DataFrame", mo, px):
|
| 310 |
+
bar_graph = px.bar(
|
| 311 |
+
demand_agg,
|
| 312 |
+
x="product_family",
|
| 313 |
+
y="order_quantity_mean",
|
| 314 |
+
title="Mean Quantity over Product Family",
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
+
note: str = """
|
| 318 |
+
Note: This graph will only show if the above mo_dataframe is correct!
|
| 319 |
+
|
| 320 |
+
If you want more on interactive graphs, check out https://github.com/marimo-team/learn/blob/main/polars/05_reactive_plots.py
|
| 321 |
+
"""
|
| 322 |
+
|
| 323 |
+
mo.vstack(
|
| 324 |
+
[
|
| 325 |
+
mo.md(note),
|
| 326 |
+
bar_graph,
|
| 327 |
+
]
|
| 328 |
+
)
|
| 329 |
+
return
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
@app.cell(hide_code=True)
|
| 333 |
+
def _(mo):
|
| 334 |
+
mo.md(
|
| 335 |
+
r"""
|
| 336 |
+
# About this Notebook
|
| 337 |
+
Polars and Marimo are both relatively new to the data wrangling space, but their power (and the thrill of their use) cannot be overstated—well, I suppose it could, but you get the meaning. In this notebook, you learn how to leverage basic Polars skills to load-in and explore your data in concert with Marimo's powerful UI elements.
|
| 338 |
+
|
| 339 |
+
## 📚 Documentation References
|
| 340 |
+
|
| 341 |
+
- **Marimo: Dataframe Transformation Guide**
|
| 342 |
+
https://docs.marimo.io/guides/working_with_data/dataframes/?h=dataframe#transforming-dataframes
|
| 343 |
+
|
| 344 |
+
- **Polars: Lazy API Overview**
|
| 345 |
+
https://docs.pola.rs/user-guide/lazy/
|
| 346 |
+
|
| 347 |
+
- **Polars: Query Plan Explained**
|
| 348 |
+
https://docs.pola.rs/user-guide/lazy/query-plan/
|
| 349 |
+
|
| 350 |
+
- **Marimo Notebook: Basic Polars Joins (by jesshart)**
|
| 351 |
+
https://marimo.io/p/@jesshart/basic-polars-joins
|
| 352 |
+
|
| 353 |
+
- **Marimo Learn: Interactive Graphs with Polars**
|
| 354 |
+
https://github.com/marimo-team/learn/blob/main/polars/05_reactive_plots.py
|
| 355 |
+
"""
|
| 356 |
+
)
|
| 357 |
+
return
|
| 358 |
+
|
| 359 |
+
|
| 360 |
+
@app.cell
|
| 361 |
+
def _():
|
| 362 |
+
import marimo as mo
|
| 363 |
+
return (mo,)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
+
@app.cell
|
| 367 |
+
def _():
|
| 368 |
+
import polars as pl
|
| 369 |
+
import requests
|
| 370 |
+
import json
|
| 371 |
+
import plotly.express as px
|
| 372 |
+
return pl, px, requests
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
if __name__ == "__main__":
|
| 376 |
+
app.run()
|