Spaces:
Sleeping
Sleeping
Merge pull request #57 from peter-gy/polars/14_user-defined-functions
Browse files
polars/14_user_defined_functions.py
ADDED
|
@@ -0,0 +1,946 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# /// script
|
| 2 |
+
# requires-python = ">=3.12"
|
| 3 |
+
# dependencies = [
|
| 4 |
+
# "altair==5.5.0",
|
| 5 |
+
# "beautifulsoup4==4.13.3",
|
| 6 |
+
# "httpx==0.28.1",
|
| 7 |
+
# "marimo",
|
| 8 |
+
# "nest-asyncio==1.6.0",
|
| 9 |
+
# "numba==0.61.0",
|
| 10 |
+
# "numpy==2.1.3",
|
| 11 |
+
# "polars==1.24.0",
|
| 12 |
+
# ]
|
| 13 |
+
# ///
|
| 14 |
+
|
| 15 |
+
import marimo
|
| 16 |
+
|
| 17 |
+
__generated_with = "0.11.17"
|
| 18 |
+
app = marimo.App(width="medium")
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
@app.cell(hide_code=True)
|
| 22 |
+
def _(mo):
|
| 23 |
+
mo.md(
|
| 24 |
+
r"""
|
| 25 |
+
# User-Defined Functions
|
| 26 |
+
|
| 27 |
+
_By [Péter Ferenc Gyarmati](http://github.com/peter-gy)_.
|
| 28 |
+
|
| 29 |
+
Throughout the previous chapters, you've seen how Polars provides a comprehensive set of built-in expressions for flexible data transformation. But what happens when you need something *more*? Perhaps your project has unique requirements, or you need to integrate functionality from an external Python library. This is where User-Defined Functions (UDFs) come into play, allowing you to extend Polars with your own custom logic.
|
| 30 |
+
|
| 31 |
+
In this chapter, we'll weigh the performance trade-offs of UDFs, pinpoint situations where they're truly beneficial, and explore different ways to effectively incorporate them into your Polars workflows. We'll walk through a complete, practical example.
|
| 32 |
+
"""
|
| 33 |
+
)
|
| 34 |
+
return
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
@app.cell(hide_code=True)
|
| 38 |
+
def _(mo):
|
| 39 |
+
mo.md(
|
| 40 |
+
r"""
|
| 41 |
+
## ⚖️ The Cost of UDFs
|
| 42 |
+
|
| 43 |
+
> Performance vs. Flexibility
|
| 44 |
+
|
| 45 |
+
Polars' built-in expressions are highly optimized for speed and parallel processing. User-defined functions (UDFs), however, introduce a significant performance overhead because they rely on standard Python code, which often runs in a single thread and bypasses Polars' logical optimizations. Therefore, always prioritize native Polars operations *whenever possible*.
|
| 46 |
+
|
| 47 |
+
However, UDFs become inevitable when you need to:
|
| 48 |
+
|
| 49 |
+
- **Integrate external libraries:** Use functionality not directly available in Polars.
|
| 50 |
+
- **Implement custom logic:** Handle complex transformations that can't be easily expressed with Polars' built-in functions.
|
| 51 |
+
|
| 52 |
+
Let's dive into a real-world project where UDFs were the only way to get the job done, demonstrating a scenario where native Polars expressions simply weren't sufficient.
|
| 53 |
+
"""
|
| 54 |
+
)
|
| 55 |
+
return
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
@app.cell(hide_code=True)
|
| 59 |
+
def _(mo):
|
| 60 |
+
mo.md(
|
| 61 |
+
r"""
|
| 62 |
+
## 📊 Project Overview
|
| 63 |
+
|
| 64 |
+
> Scraping and Analyzing Observable Notebook Statistics
|
| 65 |
+
|
| 66 |
+
If you're into data visualization, you've probably seen [D3.js](https://d3js.org/) and [Observable Plot](https://observablehq.com/plot/). Both have extensive galleries showcasing amazing visualizations. Each gallery item is a standalone [Observable notebook](https://observablehq.com/documentation/notebooks/), with metrics like stars, comments, and forks – indicators of popularity. But getting and analyzing these statistics directly isn't straightforward. We'll need to scrape the web.
|
| 67 |
+
"""
|
| 68 |
+
)
|
| 69 |
+
return
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
@app.cell(hide_code=True)
|
| 73 |
+
def _(mo):
|
| 74 |
+
mo.hstack(
|
| 75 |
+
[
|
| 76 |
+
mo.image(
|
| 77 |
+
"https://minio.peter.gy/static/assets/marimo/learn/polars/14_d3-gallery.png?0",
|
| 78 |
+
width=600,
|
| 79 |
+
caption="Screenshot of https://observablehq.com/@d3/gallery",
|
| 80 |
+
),
|
| 81 |
+
mo.image(
|
| 82 |
+
"https://minio.peter.gy/static/assets/marimo/learn/polars/14_plot-gallery.png?0",
|
| 83 |
+
width=600,
|
| 84 |
+
caption="Screenshot of https://observablehq.com/@observablehq/plot-gallery",
|
| 85 |
+
),
|
| 86 |
+
]
|
| 87 |
+
)
|
| 88 |
+
return
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
@app.cell(hide_code=True)
|
| 92 |
+
def _(mo):
|
| 93 |
+
mo.md(r"""Our goal is to use Polars UDFs to fetch the HTML content of these gallery pages. Then, we'll use the `BeautifulSoup` Python library to parse the HTML and extract the relevant metadata. After some data wrangling with native Polars expressions, we'll have a DataFrame listing each visualization notebook. Then, we'll use another UDF to retrieve the number of likes, forks, and comments for each notebook. Finally, we will create our own high-performance UDF to implement a custom notebook ranking scheme. This will involve multiple steps, showcasing different UDF approaches.""")
|
| 94 |
+
return
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
@app.cell(hide_code=True)
|
| 98 |
+
def _(mo):
|
| 99 |
+
mo.mermaid('''
|
| 100 |
+
graph LR;
|
| 101 |
+
url_df --> |"UDF: Fetch HTML"| html_df
|
| 102 |
+
html_df --> |"UDF: Parse with BeautifulSoup"| parsed_html_df
|
| 103 |
+
parsed_html_df --> |"Native Polars: Extract Data"| notebooks_df
|
| 104 |
+
notebooks_df --> |"UDF: Get Notebook Stats"| notebook_stats_df
|
| 105 |
+
notebook_stats_df --> |"Numba UDF: Compute Popularity"| notebook_popularity_df
|
| 106 |
+
''')
|
| 107 |
+
return
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
@app.cell(hide_code=True)
|
| 111 |
+
def _(mo):
|
| 112 |
+
mo.md(r"""Our starting point, `url_df`, is a simple DataFrame with a single `url` column containing the URLs of the D3 and Observable Plot gallery notebooks.""")
|
| 113 |
+
return
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
@app.cell(hide_code=True)
|
| 117 |
+
def _(pl):
|
| 118 |
+
url_df = pl.from_dict(
|
| 119 |
+
{
|
| 120 |
+
"url": [
|
| 121 |
+
"https://observablehq.com/@d3/gallery",
|
| 122 |
+
"https://observablehq.com/@observablehq/plot-gallery",
|
| 123 |
+
]
|
| 124 |
+
}
|
| 125 |
+
)
|
| 126 |
+
url_df
|
| 127 |
+
return (url_df,)
|
| 128 |
+
|
| 129 |
+
|
| 130 |
+
@app.cell(hide_code=True)
|
| 131 |
+
def _(mo):
|
| 132 |
+
mo.md(
|
| 133 |
+
r"""
|
| 134 |
+
## 🔂 Element-Wise UDFs
|
| 135 |
+
|
| 136 |
+
> Processing Value by Value
|
| 137 |
+
|
| 138 |
+
The most common way to use UDFs is to apply them element-wise. This means our custom function will execute for *each individual row* in a specified column. Our first task is to fetch the HTML content for each URL in `url_df`.
|
| 139 |
+
|
| 140 |
+
We'll define a Python function that takes a `url` (a string) as input, uses the `httpx` library (an HTTP client) to fetch the content, and returns the HTML as a string. We then integrate this function into Polars using the [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) expression.
|
| 141 |
+
|
| 142 |
+
You'll notice we have to explicitly specify the `return_dtype`. This is *crucial*. Polars doesn't automatically know what our custom function will return. We're responsible for defining the function's logic and, therefore, its output type. By providing the `return_dtype`, we help Polars maintain its internal representation of the DataFrame's schema, enabling query optimization. Think of it as giving Polars a "heads-up" about the data type it should expect.
|
| 143 |
+
"""
|
| 144 |
+
)
|
| 145 |
+
return
|
| 146 |
+
|
| 147 |
+
|
| 148 |
+
@app.cell(hide_code=True)
|
| 149 |
+
def _(httpx, pl, url_df):
|
| 150 |
+
html_df = url_df.with_columns(
|
| 151 |
+
html=pl.col("url").map_elements(
|
| 152 |
+
lambda url: httpx.get(url).text,
|
| 153 |
+
return_dtype=pl.String,
|
| 154 |
+
)
|
| 155 |
+
)
|
| 156 |
+
html_df
|
| 157 |
+
return (html_df,)
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
@app.cell(hide_code=True)
|
| 161 |
+
def _(mo):
|
| 162 |
+
mo.md(
|
| 163 |
+
r"""
|
| 164 |
+
Now, `html_df` holds the HTML for each URL. We need to parse it. Again, a UDF is the way to go. Parsing HTML with native Polars expressions would be a nightmare! Instead, we'll use the [`beautifulsoup4`](https://pypi.org/project/beautifulsoup4/) library, a standard tool for this.
|
| 165 |
+
|
| 166 |
+
These Observable pages are built with [Next.js](https://nextjs.org/), which helpfully serializes page properties as JSON within the HTML. This simplifies our UDF: we'll extract the raw JSON from the `<script id="__NEXT_DATA__" type="application/json">` tag. We'll use [`map_elements`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_elements.html) again. For clarity, we'll define this UDF as a named function, `extract_nextjs_data`, since it's a bit more complex than a simple HTTP request.
|
| 167 |
+
"""
|
| 168 |
+
)
|
| 169 |
+
return
|
| 170 |
+
|
| 171 |
+
|
| 172 |
+
@app.cell(hide_code=True)
|
| 173 |
+
def _(BeautifulSoup):
|
| 174 |
+
def extract_nextjs_data(html: str) -> str:
|
| 175 |
+
soup = BeautifulSoup(html, "html.parser")
|
| 176 |
+
script_tag = soup.find("script", id="__NEXT_DATA__")
|
| 177 |
+
return script_tag.text
|
| 178 |
+
return (extract_nextjs_data,)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
@app.cell(hide_code=True)
|
| 182 |
+
def _(extract_nextjs_data, html_df, pl):
|
| 183 |
+
parsed_html_df = html_df.select(
|
| 184 |
+
"url",
|
| 185 |
+
next_data=pl.col("html").map_elements(
|
| 186 |
+
extract_nextjs_data,
|
| 187 |
+
return_dtype=pl.String,
|
| 188 |
+
),
|
| 189 |
+
)
|
| 190 |
+
parsed_html_df
|
| 191 |
+
return (parsed_html_df,)
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
@app.cell(hide_code=True)
|
| 195 |
+
def _(mo):
|
| 196 |
+
mo.md(r"""With some data wrangling of the raw JSON (using *native* Polars expressions!), we get `notebooks_df`, containing the metadata for each notebook.""")
|
| 197 |
+
return
|
| 198 |
+
|
| 199 |
+
|
| 200 |
+
@app.cell(hide_code=True)
|
| 201 |
+
def _(parsed_html_df, pl):
|
| 202 |
+
notebooks_df = (
|
| 203 |
+
parsed_html_df.select(
|
| 204 |
+
"url",
|
| 205 |
+
# We extract the content of every cell present in the gallery notebooks
|
| 206 |
+
cell=pl.col("next_data")
|
| 207 |
+
.str.json_path_match("$.props.pageProps.initialNotebook.nodes")
|
| 208 |
+
.str.json_decode()
|
| 209 |
+
.list.eval(pl.element().struct.field("value")),
|
| 210 |
+
)
|
| 211 |
+
# We want one row per cell
|
| 212 |
+
.explode("cell")
|
| 213 |
+
# Only keep categorized notebook listing cells starting with H3
|
| 214 |
+
.filter(pl.col("cell").str.starts_with("### "))
|
| 215 |
+
# Split up the cells into [heading, description, config] sections
|
| 216 |
+
.with_columns(pl.col("cell").str.split("\n\n"))
|
| 217 |
+
.select(
|
| 218 |
+
gallery_url="url",
|
| 219 |
+
# Text after the '### ' heading, ignore '<!--' comments'
|
| 220 |
+
category=pl.col("cell").list.get(0).str.extract(r"###\s+(.*?)(?:\s+<!--.*?-->|$)"),
|
| 221 |
+
# Paragraph after heading
|
| 222 |
+
description=pl.col("cell")
|
| 223 |
+
.list.get(1)
|
| 224 |
+
.str.strip_chars(" ")
|
| 225 |
+
.str.replace_all("](/", "](https://observablehq.com/", literal=True),
|
| 226 |
+
# Parsed notebook config from ${preview([{...}])}
|
| 227 |
+
notebooks=pl.col("cell")
|
| 228 |
+
.list.get(2)
|
| 229 |
+
.str.strip_prefix("${previews([")
|
| 230 |
+
.str.strip_suffix("]})}")
|
| 231 |
+
.str.strip_chars(" \n")
|
| 232 |
+
.str.split("},")
|
| 233 |
+
# Simple regex-based attribute extraction from JS/JSON objects like
|
| 234 |
+
# ```js
|
| 235 |
+
# {
|
| 236 |
+
# path: "@d3/spilhaus-shoreline-map",
|
| 237 |
+
# "thumbnail": "66a87355e205d820...",
|
| 238 |
+
# title: "Spilhaus shoreline map",
|
| 239 |
+
# "author": "D3"
|
| 240 |
+
# }
|
| 241 |
+
# ```
|
| 242 |
+
.list.eval(
|
| 243 |
+
pl.struct(
|
| 244 |
+
*(
|
| 245 |
+
pl.element()
|
| 246 |
+
.str.extract(f'(?:"{key}"|{key})\s*:\s*"([^"]*)"')
|
| 247 |
+
.alias(key)
|
| 248 |
+
for key in ["path", "thumbnail", "title"]
|
| 249 |
+
)
|
| 250 |
+
)
|
| 251 |
+
),
|
| 252 |
+
)
|
| 253 |
+
.explode("notebooks")
|
| 254 |
+
.unnest("notebooks")
|
| 255 |
+
.filter(pl.col("path").is_not_null())
|
| 256 |
+
# Final projection to end up with directly usable values
|
| 257 |
+
.select(
|
| 258 |
+
pl.concat_str(
|
| 259 |
+
[
|
| 260 |
+
pl.lit("https://static.observableusercontent.com/thumbnail/"),
|
| 261 |
+
"thumbnail",
|
| 262 |
+
pl.lit(".jpg"),
|
| 263 |
+
],
|
| 264 |
+
).alias("notebook_thumbnail_src"),
|
| 265 |
+
"category",
|
| 266 |
+
"title",
|
| 267 |
+
"description",
|
| 268 |
+
pl.concat_str(
|
| 269 |
+
[pl.lit("https://observablehq.com"), "path"], separator="/"
|
| 270 |
+
).alias("notebook_url"),
|
| 271 |
+
)
|
| 272 |
+
)
|
| 273 |
+
notebooks_df
|
| 274 |
+
return (notebooks_df,)
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
@app.cell(hide_code=True)
|
| 278 |
+
def _(mo):
|
| 279 |
+
mo.md(
|
| 280 |
+
r"""
|
| 281 |
+
## 📦 Batch-Wise UDFs
|
| 282 |
+
|
| 283 |
+
> Processing Entire Series
|
| 284 |
+
|
| 285 |
+
`map_elements` calls the UDF for *each row*. Fine for our tiny, two-rows-tall `url_df`. But `notebooks_df` has almost 400 rows! Individual HTTP requests for each would be painfully slow.
|
| 286 |
+
|
| 287 |
+
We want stats for each notebook in `notebooks_df`. To avoid sequential requests, we'll use Polars' [`map_batches`](https://docs.pola.rs/api/python/stable/reference/expressions/api/polars.Expr.map_batches.html). This lets us process an *entire Series* (a column) at once.
|
| 288 |
+
|
| 289 |
+
Our UDF, `fetch_html_batch`, will take a *Series* of URLs and use `asyncio` to make concurrent requests – a huge performance boost.
|
| 290 |
+
"""
|
| 291 |
+
)
|
| 292 |
+
return
|
| 293 |
+
|
| 294 |
+
|
| 295 |
+
@app.cell(hide_code=True)
|
| 296 |
+
def _(Iterable, asyncio, httpx, mo):
|
| 297 |
+
async def _fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]:
|
| 298 |
+
async with httpx.AsyncClient(timeout=15) as client:
|
| 299 |
+
res = await asyncio.gather(*(client.get(url) for url in urls))
|
| 300 |
+
return tuple((r.text for r in res))
|
| 301 |
+
|
| 302 |
+
|
| 303 |
+
@mo.cache
|
| 304 |
+
def fetch_html_batch(urls: Iterable[str]) -> tuple[str, ...]:
|
| 305 |
+
return asyncio.run(_fetch_html_batch(urls))
|
| 306 |
+
return (fetch_html_batch,)
|
| 307 |
+
|
| 308 |
+
|
| 309 |
+
@app.cell(hide_code=True)
|
| 310 |
+
def _(mo):
|
| 311 |
+
mo.callout(
|
| 312 |
+
mo.md("""
|
| 313 |
+
Since `fetch_html_batch` is a pure Python function and performs multiple network requests, it's a good candidate for caching. We use [`mo.cache`](https://docs.marimo.io/api/caching/#marimo.cache) to avoid redundant requests to the same URL. This is a simple way to improve performance without modifying the core logic.
|
| 314 |
+
"""
|
| 315 |
+
),
|
| 316 |
+
kind="info",
|
| 317 |
+
)
|
| 318 |
+
return
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
@app.cell(hide_code=True)
|
| 322 |
+
def _(mo, notebooks_df):
|
| 323 |
+
category = mo.ui.dropdown(
|
| 324 |
+
notebooks_df.sort("category").get_column("category"),
|
| 325 |
+
value="Maps",
|
| 326 |
+
)
|
| 327 |
+
return (category,)
|
| 328 |
+
|
| 329 |
+
|
| 330 |
+
@app.cell(hide_code=True)
|
| 331 |
+
def _(category, extract_nextjs_data, fetch_html_batch, notebooks_df, pl):
|
| 332 |
+
notebook_stats_df = (
|
| 333 |
+
# Setting filter upstream to limit number of concurrent HTTP requests
|
| 334 |
+
notebooks_df.filter(category=category.value)
|
| 335 |
+
.with_columns(
|
| 336 |
+
notebook_html=pl.col("notebook_url")
|
| 337 |
+
.map_batches(fetch_html_batch, return_dtype=pl.List(pl.String))
|
| 338 |
+
.explode()
|
| 339 |
+
)
|
| 340 |
+
.with_columns(
|
| 341 |
+
notebook_data=pl.col("notebook_html")
|
| 342 |
+
.map_elements(
|
| 343 |
+
extract_nextjs_data,
|
| 344 |
+
return_dtype=pl.String,
|
| 345 |
+
)
|
| 346 |
+
.str.json_path_match("$.props.pageProps.initialNotebook")
|
| 347 |
+
.str.json_decode()
|
| 348 |
+
)
|
| 349 |
+
.drop("notebook_html")
|
| 350 |
+
.with_columns(
|
| 351 |
+
*[
|
| 352 |
+
pl.col("notebook_data").struct.field(key).alias(key)
|
| 353 |
+
for key in ["likes", "forks", "comments", "license"]
|
| 354 |
+
]
|
| 355 |
+
)
|
| 356 |
+
.drop("notebook_data")
|
| 357 |
+
.with_columns(pl.col("comments").list.len())
|
| 358 |
+
.select(
|
| 359 |
+
pl.exclude("description", "notebook_url"),
|
| 360 |
+
"description",
|
| 361 |
+
"notebook_url",
|
| 362 |
+
)
|
| 363 |
+
.sort("likes", descending=True)
|
| 364 |
+
)
|
| 365 |
+
return (notebook_stats_df,)
|
| 366 |
+
|
| 367 |
+
|
| 368 |
+
@app.cell(hide_code=True)
|
| 369 |
+
def _(mo, notebook_stats_df):
|
| 370 |
+
notebooks = mo.ui.table(notebook_stats_df, selection='single', initial_selection=[2], page_size=5)
|
| 371 |
+
notebook_height = mo.ui.slider(start=400, stop=2000, value=825, step=25, show_value=True, label='Notebook Height')
|
| 372 |
+
return notebook_height, notebooks
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
@app.cell(hide_code=True)
|
| 376 |
+
def _():
|
| 377 |
+
def nb_iframe(notebook_url: str, height=825) -> str:
|
| 378 |
+
embed_url = notebook_url.replace(
|
| 379 |
+
"https://observablehq.com", "https://observablehq.com/embed"
|
| 380 |
+
)
|
| 381 |
+
return f'<iframe width="100%" height="{height}" frameborder="0" src="{embed_url}?cell=*"></iframe>'
|
| 382 |
+
return (nb_iframe,)
|
| 383 |
+
|
| 384 |
+
|
| 385 |
+
@app.cell(hide_code=True)
|
| 386 |
+
def _(mo):
|
| 387 |
+
mo.md(r"""Now that we have access to notebook-level statistics, we can rank the visualizations by the number of likes they received & display them interactively.""")
|
| 388 |
+
return
|
| 389 |
+
|
| 390 |
+
|
| 391 |
+
@app.cell(hide_code=True)
|
| 392 |
+
def _(mo):
|
| 393 |
+
mo.callout("💡 Explore the visualizations by paging through the table below and selecting any of its rows.")
|
| 394 |
+
return
|
| 395 |
+
|
| 396 |
+
|
| 397 |
+
@app.cell(hide_code=True)
|
| 398 |
+
def _(category, mo, nb_iframe, notebook_height, notebooks):
|
| 399 |
+
notebook = notebooks.value.to_dicts()[0]
|
| 400 |
+
mo.vstack(
|
| 401 |
+
[
|
| 402 |
+
mo.hstack([category, notebook_height]),
|
| 403 |
+
notebooks,
|
| 404 |
+
mo.md(f"{notebook['description']}"),
|
| 405 |
+
mo.md('---'),
|
| 406 |
+
mo.md(nb_iframe(notebook["notebook_url"], notebook_height.value)),
|
| 407 |
+
]
|
| 408 |
+
)
|
| 409 |
+
return (notebook,)
|
| 410 |
+
|
| 411 |
+
|
| 412 |
+
@app.cell(hide_code=True)
|
| 413 |
+
def _(mo):
|
| 414 |
+
mo.md(
|
| 415 |
+
r"""
|
| 416 |
+
## ⚙️ Row-Wise UDFs
|
| 417 |
+
|
| 418 |
+
> Accessing All Columns at Once
|
| 419 |
+
|
| 420 |
+
Sometimes, you need to work with *all* columns of a row at once. This is where [`map_rows`](https://docs.pola.rs/api/python/stable/reference/dataframe/api/polars.DataFrame.map_rows.html) comes in. It operates directly on the DataFrame, passing each row to your UDF *as a tuple*.
|
| 421 |
+
|
| 422 |
+
Below, `create_notebook_summary` takes a row from `notebook_stats_df` (as a tuple) and returns a formatted Markdown string summarizing the notebook's key stats. We're essentially reducing the DataFrame to a single column. While this *could* be done with native Polars expressions, it would be much more cumbersome. This example demonstrates a case where a row-wise UDF simplifies the code, even if the underlying operation isn't inherently complex.
|
| 423 |
+
"""
|
| 424 |
+
)
|
| 425 |
+
return
|
| 426 |
+
|
| 427 |
+
|
| 428 |
+
@app.cell(hide_code=True)
|
| 429 |
+
def _():
|
| 430 |
+
def create_notebook_summary(row: tuple) -> str:
|
| 431 |
+
(
|
| 432 |
+
thumbnail_src,
|
| 433 |
+
category,
|
| 434 |
+
title,
|
| 435 |
+
likes,
|
| 436 |
+
forks,
|
| 437 |
+
comments,
|
| 438 |
+
license,
|
| 439 |
+
description,
|
| 440 |
+
notebook_url,
|
| 441 |
+
) = row
|
| 442 |
+
return (
|
| 443 |
+
f"""
|
| 444 |
+
### [{title}]({notebook_url})
|
| 445 |
+
|
| 446 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 12px; margin: 12px 0;">
|
| 447 |
+
<div>⭐ <strong>Likes:</strong> {likes}</div>
|
| 448 |
+
<div>↗️ <strong>Forks:</strong> {forks}</div>
|
| 449 |
+
<div>💬 <strong>Comments:</strong> {comments}</div>
|
| 450 |
+
<div>⚖️ <strong>License:</strong> {license}</div>
|
| 451 |
+
</div>
|
| 452 |
+
|
| 453 |
+
<a href="{notebook_url}" target="_blank">
|
| 454 |
+
<img src="{thumbnail_src}" style="height: 300px;" />
|
| 455 |
+
<a/>
|
| 456 |
+
""".strip('\n')
|
| 457 |
+
)
|
| 458 |
+
return (create_notebook_summary,)
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
@app.cell(hide_code=True)
|
| 462 |
+
def _(create_notebook_summary, notebook_stats_df, pl):
|
| 463 |
+
notebook_summary_df = notebook_stats_df.map_rows(
|
| 464 |
+
create_notebook_summary,
|
| 465 |
+
return_dtype=pl.String,
|
| 466 |
+
).rename({"map": "summary"})
|
| 467 |
+
notebook_summary_df.head(1)
|
| 468 |
+
return (notebook_summary_df,)
|
| 469 |
+
|
| 470 |
+
|
| 471 |
+
@app.cell(hide_code=True)
|
| 472 |
+
def _(mo):
|
| 473 |
+
mo.callout("💡 You can explore individual notebook statistics through the carousel. Discover the visualization's source code by clicking the notebook title or the thumbnail.")
|
| 474 |
+
return
|
| 475 |
+
|
| 476 |
+
|
| 477 |
+
@app.cell(hide_code=True)
|
| 478 |
+
def _(mo, notebook_summary_df):
|
| 479 |
+
mo.carousel(
|
| 480 |
+
[
|
| 481 |
+
mo.lazy(mo.md(summary))
|
| 482 |
+
for summary in notebook_summary_df.get_column("summary")
|
| 483 |
+
]
|
| 484 |
+
)
|
| 485 |
+
return
|
| 486 |
+
|
| 487 |
+
|
| 488 |
+
@app.cell(hide_code=True)
|
| 489 |
+
def _(mo):
|
| 490 |
+
mo.md(
|
| 491 |
+
r"""
|
| 492 |
+
## 🚀 Higher-performance UDFs
|
| 493 |
+
|
| 494 |
+
> Leveraging Numba to Make Python Fast
|
| 495 |
+
|
| 496 |
+
Python code doesn't *always* mean slow code. While UDFs *often* introduce performance overhead, there are exceptions. NumPy's universal functions ([`ufuncs`](https://numpy.org/doc/stable/reference/ufuncs.html)) and generalized universal functions ([`gufuncs`](https://numpy.org/neps/nep-0005-generalized-ufuncs.html)) provide high-performance operations on NumPy arrays, thanks to low-level implementations.
|
| 497 |
+
|
| 498 |
+
But NumPy's built-in functions are predefined. We can't easily use them for *custom* logic. Enter [`numba`](https://numba.pydata.org/). Numba is a just-in-time (JIT) compiler that translates Python functions into optimized machine code *at runtime*. It provides decorators like [`numba.guvectorize`](https://numba.readthedocs.io/en/stable/user/vectorize.html#the-guvectorize-decorator) that let us create our *own* high-performance `gufuncs` – *without* writing low-level code!
|
| 499 |
+
"""
|
| 500 |
+
)
|
| 501 |
+
return
|
| 502 |
+
|
| 503 |
+
|
| 504 |
+
@app.cell(hide_code=True)
|
| 505 |
+
def _(mo):
|
| 506 |
+
mo.md(
|
| 507 |
+
r"""
|
| 508 |
+
Let's create a custom popularity metric to rank notebooks, considering likes, forks, *and* comments (not just likes). We'll define `weighted_popularity_numba`, decorated with `@numba.guvectorize`. The decorator arguments specify that we're taking three integer vectors of length `n` and returning a float vector of length `n`.
|
| 509 |
+
|
| 510 |
+
The weighted popularity score for each notebook is calculated using the following formula:
|
| 511 |
+
|
| 512 |
+
$$
|
| 513 |
+
\begin{equation}
|
| 514 |
+
\text{score}_i = w_l \cdot l_i^{f} + w_f \cdot f_i^{f} + w_c \cdot c_i^{f}
|
| 515 |
+
\end{equation}
|
| 516 |
+
$$
|
| 517 |
+
|
| 518 |
+
with:
|
| 519 |
+
"""
|
| 520 |
+
)
|
| 521 |
+
return
|
| 522 |
+
|
| 523 |
+
|
| 524 |
+
@app.cell(hide_code=True)
|
| 525 |
+
def _(mo, non_linear_factor, weight_comments, weight_forks, weight_likes):
|
| 526 |
+
mo.md(rf"""
|
| 527 |
+
| Symbol | Description |
|
| 528 |
+
|--------|-------------|
|
| 529 |
+
| $\text{{score}}_i$ | Popularity score for the *i*-th notebook |
|
| 530 |
+
| $w_l = {weight_likes.value}$ | Weight for likes |
|
| 531 |
+
| $l_i$ | Number of likes for the *i*-th notebook |
|
| 532 |
+
| $w_f = {weight_forks.value}$ | Weight for forks |
|
| 533 |
+
| $f_i$ | Number of forks for the *i*-th notebook |
|
| 534 |
+
| $w_c = {weight_comments.value}$ | Weight for comments |
|
| 535 |
+
| $c_i$ | Number of comments for the *i*-th notebook |
|
| 536 |
+
| $f = {non_linear_factor.value}$ | Non-linear factor (exponent) |
|
| 537 |
+
""")
|
| 538 |
+
return
|
| 539 |
+
|
| 540 |
+
|
| 541 |
+
@app.cell(hide_code=True)
|
| 542 |
+
def _(mo):
|
| 543 |
+
weight_likes = mo.ui.slider(
|
| 544 |
+
start=0.1,
|
| 545 |
+
stop=1,
|
| 546 |
+
value=0.5,
|
| 547 |
+
step=0.1,
|
| 548 |
+
show_value=True,
|
| 549 |
+
label="⭐ Weight for Likes",
|
| 550 |
+
)
|
| 551 |
+
weight_forks = mo.ui.slider(
|
| 552 |
+
start=0.1,
|
| 553 |
+
stop=1,
|
| 554 |
+
value=0.3,
|
| 555 |
+
step=0.1,
|
| 556 |
+
show_value=True,
|
| 557 |
+
label="↗️ Weight for Forks",
|
| 558 |
+
)
|
| 559 |
+
weight_comments = mo.ui.slider(
|
| 560 |
+
start=0.1,
|
| 561 |
+
stop=1,
|
| 562 |
+
value=0.5,
|
| 563 |
+
step=0.1,
|
| 564 |
+
show_value=True,
|
| 565 |
+
label="💬 Weight for Comments",
|
| 566 |
+
)
|
| 567 |
+
non_linear_factor = mo.ui.slider(
|
| 568 |
+
start=1,
|
| 569 |
+
stop=2,
|
| 570 |
+
value=1.2,
|
| 571 |
+
step=0.1,
|
| 572 |
+
show_value=True,
|
| 573 |
+
label="🎢 Non-Linear Factor",
|
| 574 |
+
)
|
| 575 |
+
return non_linear_factor, weight_comments, weight_forks, weight_likes
|
| 576 |
+
|
| 577 |
+
|
| 578 |
+
@app.cell(hide_code=True)
|
| 579 |
+
def _(
|
| 580 |
+
non_linear_factor,
|
| 581 |
+
np,
|
| 582 |
+
numba,
|
| 583 |
+
weight_comments,
|
| 584 |
+
weight_forks,
|
| 585 |
+
weight_likes,
|
| 586 |
+
):
|
| 587 |
+
w_l = weight_likes.value
|
| 588 |
+
w_f = weight_forks.value
|
| 589 |
+
w_c = weight_comments.value
|
| 590 |
+
nlf = non_linear_factor.value
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
@numba.guvectorize(
|
| 594 |
+
[(numba.int64[:], numba.int64[:], numba.int64[:], numba.float64[:])],
|
| 595 |
+
"(n), (n), (n) -> (n)",
|
| 596 |
+
)
|
| 597 |
+
def weighted_popularity_numba(
|
| 598 |
+
likes: np.ndarray,
|
| 599 |
+
forks: np.ndarray,
|
| 600 |
+
comments: np.ndarray,
|
| 601 |
+
out: np.ndarray,
|
| 602 |
+
):
|
| 603 |
+
for i in range(likes.shape[0]):
|
| 604 |
+
out[i] = (
|
| 605 |
+
w_l * (likes[i] ** nlf)
|
| 606 |
+
+ w_f * (forks[i] ** nlf)
|
| 607 |
+
+ w_c * (comments[i] ** nlf)
|
| 608 |
+
)
|
| 609 |
+
return nlf, w_c, w_f, w_l, weighted_popularity_numba
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
@app.cell(hide_code=True)
|
| 613 |
+
def _(mo):
|
| 614 |
+
mo.md(r"""We apply our JIT-compiled UDF using `map_batches`, as before. The key is that we're passing entire columns directly to `weighted_popularity_numba`. Polars and Numba handle the conversion to NumPy arrays behind the scenes. This direct integration is a major benefit of using `guvectorize`.""")
|
| 615 |
+
return
|
| 616 |
+
|
| 617 |
+
|
| 618 |
+
@app.cell(hide_code=True)
|
| 619 |
+
def _(notebook_stats_df, pl, weighted_popularity_numba):
|
| 620 |
+
notebook_popularity_df = (
|
| 621 |
+
notebook_stats_df.select(
|
| 622 |
+
pl.col("notebook_thumbnail_src").alias("thumbnail"),
|
| 623 |
+
"title",
|
| 624 |
+
"likes",
|
| 625 |
+
"forks",
|
| 626 |
+
"comments",
|
| 627 |
+
popularity=pl.struct(["likes", "forks", "comments"]).map_batches(
|
| 628 |
+
lambda obj: weighted_popularity_numba(
|
| 629 |
+
obj.struct.field("likes"),
|
| 630 |
+
obj.struct.field("forks"),
|
| 631 |
+
obj.struct.field("comments"),
|
| 632 |
+
),
|
| 633 |
+
return_dtype=pl.Float64,
|
| 634 |
+
),
|
| 635 |
+
url="notebook_url",
|
| 636 |
+
)
|
| 637 |
+
)
|
| 638 |
+
return (notebook_popularity_df,)
|
| 639 |
+
|
| 640 |
+
|
| 641 |
+
@app.cell(hide_code=True)
|
| 642 |
+
def _(mo):
|
| 643 |
+
mo.callout("💡 Adjust the hyperparameters of the popularity ranking UDF. How do the weights and non-linear factor affect the notebook rankings?")
|
| 644 |
+
return
|
| 645 |
+
|
| 646 |
+
|
| 647 |
+
@app.cell(hide_code=True)
|
| 648 |
+
def _(
|
| 649 |
+
mo,
|
| 650 |
+
non_linear_factor,
|
| 651 |
+
notebook_popularity_df,
|
| 652 |
+
weight_comments,
|
| 653 |
+
weight_forks,
|
| 654 |
+
weight_likes,
|
| 655 |
+
):
|
| 656 |
+
mo.vstack(
|
| 657 |
+
[
|
| 658 |
+
mo.hstack([weight_likes, weight_forks]),
|
| 659 |
+
mo.hstack([weight_comments, non_linear_factor]),
|
| 660 |
+
notebook_popularity_df,
|
| 661 |
+
]
|
| 662 |
+
)
|
| 663 |
+
return
|
| 664 |
+
|
| 665 |
+
|
| 666 |
+
@app.cell(hide_code=True)
|
| 667 |
+
def _(mo):
|
| 668 |
+
mo.md(r"""As the slope chart below demonstrates, this new ranking strategy significantly changes the notebook order, as it considers forks and comments, not just likes.""")
|
| 669 |
+
return
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
@app.cell(hide_code=True)
|
| 673 |
+
def _(alt, notebook_popularity_df, pl):
|
| 674 |
+
notebook_ranks_df = (
|
| 675 |
+
notebook_popularity_df.sort("likes", descending=True)
|
| 676 |
+
.with_row_index("rank_by_likes")
|
| 677 |
+
.with_columns(pl.col("rank_by_likes") + 1)
|
| 678 |
+
.sort("popularity", descending=True)
|
| 679 |
+
.with_row_index("rank_by_popularity")
|
| 680 |
+
.with_columns(pl.col("rank_by_popularity") + 1)
|
| 681 |
+
.select("thumbnail", "title", "rank_by_popularity", "rank_by_likes")
|
| 682 |
+
.unpivot(
|
| 683 |
+
["rank_by_popularity", "rank_by_likes"],
|
| 684 |
+
index="title",
|
| 685 |
+
variable_name="strategy",
|
| 686 |
+
value_name="rank",
|
| 687 |
+
)
|
| 688 |
+
)
|
| 689 |
+
|
| 690 |
+
# Slope chart to visualize rank differences by strategy
|
| 691 |
+
lines = notebook_ranks_df.plot.line(
|
| 692 |
+
x="strategy:O",
|
| 693 |
+
y="rank:Q",
|
| 694 |
+
color="title:N",
|
| 695 |
+
)
|
| 696 |
+
points = notebook_ranks_df.plot.point(
|
| 697 |
+
x="strategy:O",
|
| 698 |
+
y="rank:Q",
|
| 699 |
+
color=alt.Color("title:N", legend=None),
|
| 700 |
+
fill="title:N",
|
| 701 |
+
)
|
| 702 |
+
(points + lines).properties(width=400)
|
| 703 |
+
return lines, notebook_ranks_df, points
|
| 704 |
+
|
| 705 |
+
|
| 706 |
+
@app.cell(hide_code=True)
|
| 707 |
+
def _(mo):
|
| 708 |
+
mo.md(
|
| 709 |
+
r"""
|
| 710 |
+
## ⏱️ Quantifying the Overhead
|
| 711 |
+
|
| 712 |
+
> UDF Performance Comparison
|
| 713 |
+
|
| 714 |
+
To truly understand the performance implications of using UDFs, let's conduct a benchmark. We'll create a DataFrame with random numbers and perform the same numerical operation using four different methods:
|
| 715 |
+
|
| 716 |
+
1. **Native Polars:** Using Polars' built-in expressions.
|
| 717 |
+
2. **`map_elements`:** Applying a Python function element-wise.
|
| 718 |
+
3. **`map_batches`:** **Applying** a Python function to the entire Series.
|
| 719 |
+
4. **`map_batches` with Numba:** Applying a JIT-compiled function to batches, similar to a generalized universal function.
|
| 720 |
+
|
| 721 |
+
We'll use a simple, but non-trivial, calculation: `result = (x * 2.5 + 5) / (x + 1)`. This involves multiplication, addition, and division, giving us a realistic representation of a common numerical operation. We'll use the `timeit` module, to accurately measure execution times over multiple trials.
|
| 722 |
+
"""
|
| 723 |
+
)
|
| 724 |
+
return
|
| 725 |
+
|
| 726 |
+
|
| 727 |
+
@app.cell(hide_code=True)
|
| 728 |
+
def _(mo):
|
| 729 |
+
mo.callout("💡 Tweak the benchmark parameters to explore how execution times change with different sample sizes and trial counts. Do you notice anything surprising as you decrease the number of samples?")
|
| 730 |
+
return
|
| 731 |
+
|
| 732 |
+
|
| 733 |
+
@app.cell(hide_code=True)
|
| 734 |
+
def _(benchmark_plot, mo, num_samples, num_trials):
|
| 735 |
+
mo.vstack(
|
| 736 |
+
[
|
| 737 |
+
mo.hstack([num_samples, num_trials]),
|
| 738 |
+
mo.md(
|
| 739 |
+
f"""---
|
| 740 |
+
Performance comparison over **{num_trials.value:,} trials** with **{num_samples.value:,} samples**.
|
| 741 |
+
|
| 742 |
+
> Lower execution times are better.
|
| 743 |
+
"""
|
| 744 |
+
),
|
| 745 |
+
benchmark_plot,
|
| 746 |
+
]
|
| 747 |
+
)
|
| 748 |
+
return
|
| 749 |
+
|
| 750 |
+
|
| 751 |
+
@app.cell(hide_code=True)
|
| 752 |
+
def _(mo):
|
| 753 |
+
mo.md(
|
| 754 |
+
r"""
|
| 755 |
+
As anticipated, the `Batch-Wise UDF (Python)` and `Element-Wise UDF` exhibit significantly worse performance, essentially acting as pure-Python for-each loops.
|
| 756 |
+
|
| 757 |
+
However, when Python serves as an interface to lower-level, high-performance libraries, we observe substantial improvements. The `Batch-Wise UDF (NumPy)` lags behind both `Batch-Wise UDF (Numba)` and `Native Polars`, but it still represents a considerable improvement over pure-Python UDFs due to its vectorized computations.
|
| 758 |
+
|
| 759 |
+
Numba's Just-In-Time (JIT) compilation delivers a dramatic performance boost, achieving speeds comparable to native Polars expressions. This demonstrates that UDFs, particularly when combined with tools like Numba, don't inevitably lead to bottlenecks in numerical computations.
|
| 760 |
+
"""
|
| 761 |
+
)
|
| 762 |
+
return
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
@app.cell(hide_code=True)
|
| 766 |
+
def _(mo):
|
| 767 |
+
num_samples = mo.ui.slider(
|
| 768 |
+
start=1_000,
|
| 769 |
+
stop=1_000_000,
|
| 770 |
+
value=250_000,
|
| 771 |
+
step=1000,
|
| 772 |
+
show_value=True,
|
| 773 |
+
debounce=True,
|
| 774 |
+
label="Number of Samples",
|
| 775 |
+
)
|
| 776 |
+
num_trials = mo.ui.slider(
|
| 777 |
+
start=50,
|
| 778 |
+
stop=1_000,
|
| 779 |
+
value=100,
|
| 780 |
+
step=50,
|
| 781 |
+
show_value=True,
|
| 782 |
+
debounce=True,
|
| 783 |
+
label="Number of Trials",
|
| 784 |
+
)
|
| 785 |
+
return num_samples, num_trials
|
| 786 |
+
|
| 787 |
+
|
| 788 |
+
@app.cell(hide_code=True)
|
| 789 |
+
def _(np, num_samples, pl):
|
| 790 |
+
rng = np.random.default_rng(42)
|
| 791 |
+
sample_df = pl.from_dict({"x": rng.random(num_samples.value)})
|
| 792 |
+
return rng, sample_df
|
| 793 |
+
|
| 794 |
+
|
| 795 |
+
@app.cell(hide_code=True)
|
| 796 |
+
def _(np, num_trials, numba, pl, sample_df, timeit):
|
| 797 |
+
def run_native():
|
| 798 |
+
sample_df.with_columns(
|
| 799 |
+
result_native=(pl.col("x") * 2.5 + 5) / (pl.col("x") + 1)
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
|
| 803 |
+
def _calculate_elementwise(x: float) -> float:
|
| 804 |
+
return (x * 2.5 + 5) / (x + 1)
|
| 805 |
+
|
| 806 |
+
|
| 807 |
+
def run_map_elements():
|
| 808 |
+
sample_df.with_columns(
|
| 809 |
+
result_map_elements=pl.col("x").map_elements(
|
| 810 |
+
_calculate_elementwise,
|
| 811 |
+
return_dtype=pl.Float64,
|
| 812 |
+
)
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
|
| 816 |
+
def _calculate_batchwise_numpy(x_series: pl.Series) -> pl.Series:
|
| 817 |
+
x_array = x_series.to_numpy()
|
| 818 |
+
result_array = (x_array * 2.5 + 5) / (x_array + 1)
|
| 819 |
+
return pl.Series(result_array)
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
def run_map_batches_numpy():
|
| 823 |
+
sample_df.with_columns(
|
| 824 |
+
result_map_batches_numpy=pl.col("x").map_batches(
|
| 825 |
+
_calculate_batchwise_numpy,
|
| 826 |
+
return_dtype=pl.Float64,
|
| 827 |
+
)
|
| 828 |
+
)
|
| 829 |
+
|
| 830 |
+
|
| 831 |
+
def _calculate_batchwise_python(x_series: pl.Series) -> pl.Series:
|
| 832 |
+
x_array = x_series.to_list()
|
| 833 |
+
result_array = [_calculate_elementwise(x) for x in x_array]
|
| 834 |
+
return pl.Series(result_array)
|
| 835 |
+
|
| 836 |
+
|
| 837 |
+
def run_map_batches_python():
|
| 838 |
+
sample_df.with_columns(
|
| 839 |
+
result_map_batches_python=pl.col("x").map_batches(
|
| 840 |
+
_calculate_batchwise_python,
|
| 841 |
+
return_dtype=pl.Float64,
|
| 842 |
+
)
|
| 843 |
+
)
|
| 844 |
+
|
| 845 |
+
|
| 846 |
+
@numba.guvectorize([(numba.float64[:], numba.float64[:])], "(n) -> (n)")
|
| 847 |
+
def _calculate_batchwise_numba(x: np.ndarray, out: np.ndarray):
|
| 848 |
+
for i in range(x.shape[0]):
|
| 849 |
+
out[i] = (x[i] * 2.5 + 5) / (x[i] + 1)
|
| 850 |
+
|
| 851 |
+
|
| 852 |
+
def run_map_batches_numba():
|
| 853 |
+
sample_df.with_columns(
|
| 854 |
+
result_map_batches_numba=pl.col("x").map_batches(
|
| 855 |
+
_calculate_batchwise_numba,
|
| 856 |
+
return_dtype=pl.Float64,
|
| 857 |
+
)
|
| 858 |
+
)
|
| 859 |
+
|
| 860 |
+
|
| 861 |
+
def time_method(callable_name: str, number=num_trials.value) -> float:
|
| 862 |
+
fn = globals()[callable_name]
|
| 863 |
+
return timeit.timeit(fn, number=number)
|
| 864 |
+
return (
|
| 865 |
+
run_map_batches_numba,
|
| 866 |
+
run_map_batches_numpy,
|
| 867 |
+
run_map_batches_python,
|
| 868 |
+
run_map_elements,
|
| 869 |
+
run_native,
|
| 870 |
+
time_method,
|
| 871 |
+
)
|
| 872 |
+
|
| 873 |
+
|
| 874 |
+
@app.cell(hide_code=True)
|
| 875 |
+
def _(alt, pl, time_method):
|
| 876 |
+
benchmark_df = pl.from_dicts(
|
| 877 |
+
[
|
| 878 |
+
{
|
| 879 |
+
"title": "Native Polars",
|
| 880 |
+
"callable_name": "run_native",
|
| 881 |
+
},
|
| 882 |
+
{
|
| 883 |
+
"title": "Element-Wise UDF",
|
| 884 |
+
"callable_name": "run_map_elements",
|
| 885 |
+
},
|
| 886 |
+
{
|
| 887 |
+
"title": "Batch-Wise UDF (NumPy)",
|
| 888 |
+
"callable_name": "run_map_batches_numpy",
|
| 889 |
+
},
|
| 890 |
+
{
|
| 891 |
+
"title": "Batch-Wise UDF (Python)",
|
| 892 |
+
"callable_name": "run_map_batches_python",
|
| 893 |
+
},
|
| 894 |
+
{
|
| 895 |
+
"title": "Batch-Wise UDF (Numba)",
|
| 896 |
+
"callable_name": "run_map_batches_numba",
|
| 897 |
+
},
|
| 898 |
+
]
|
| 899 |
+
).with_columns(
|
| 900 |
+
time=pl.col("callable_name").map_elements(
|
| 901 |
+
time_method, return_dtype=pl.Float64
|
| 902 |
+
)
|
| 903 |
+
)
|
| 904 |
+
|
| 905 |
+
benchmark_plot = benchmark_df.plot.bar(
|
| 906 |
+
x=alt.X("title:N", title="Method", sort="-y"),
|
| 907 |
+
y=alt.Y("time:Q", title="Execution Time (s)", axis=alt.Axis(format=".3f")),
|
| 908 |
+
).properties(width=400)
|
| 909 |
+
return benchmark_df, benchmark_plot
|
| 910 |
+
|
| 911 |
+
|
| 912 |
+
@app.cell(hide_code=True)
|
| 913 |
+
def _():
|
| 914 |
+
import asyncio
|
| 915 |
+
import timeit
|
| 916 |
+
from typing import Iterable
|
| 917 |
+
|
| 918 |
+
import altair as alt
|
| 919 |
+
import httpx
|
| 920 |
+
import marimo as mo
|
| 921 |
+
import nest_asyncio
|
| 922 |
+
import numba
|
| 923 |
+
import numpy as np
|
| 924 |
+
from bs4 import BeautifulSoup
|
| 925 |
+
|
| 926 |
+
import polars as pl
|
| 927 |
+
|
| 928 |
+
# Fixes RuntimeError: asyncio.run() cannot be called from a running event loop
|
| 929 |
+
nest_asyncio.apply()
|
| 930 |
+
return (
|
| 931 |
+
BeautifulSoup,
|
| 932 |
+
Iterable,
|
| 933 |
+
alt,
|
| 934 |
+
asyncio,
|
| 935 |
+
httpx,
|
| 936 |
+
mo,
|
| 937 |
+
nest_asyncio,
|
| 938 |
+
np,
|
| 939 |
+
numba,
|
| 940 |
+
pl,
|
| 941 |
+
timeit,
|
| 942 |
+
)
|
| 943 |
+
|
| 944 |
+
|
| 945 |
+
if __name__ == "__main__":
|
| 946 |
+
app.run()
|