Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	File size: 40,324 Bytes
			
			| d61b9c7 | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 | import os
import time
import string
import argparse
import re
import sys
import random
import pickle
import logging
from fastai.distributed import *
from fastai.vision import *
import glob
import settings
import torch
import torch.backends.cudnn as cudnn
import torch.utils.data
import torch.nn.functional as F
from torch.autograd import Variable
import numpy as np
from skimage.color import gray2rgb
from nltk.metrics.distance import edit_distance
import cv2
import pickle
import copy
# from dataset import hierarchical_dataset, AlignCollate
# from model import Model, SuperPixler, CastNumpy, STRScore
# import hiddenlayer as hl
from callbacks import DumpPrediction, IterationCallback, TextAccuracy, TopKTextAccuracy
from dataset_matrn import ImageDataset, CustomImageDataset, TextDataset
from losses_matrn import MultiLosses
from lime import lime_image
import matplotlib.pyplot as plt
import random
from transforms import CVColorJitter, CVDeterioration, CVGeometry
from utils_matrn import Config, Logger, CharsetMapper, MyConcatDataset
from utils import SRNConverter
from model_matrn import STRScore
from lime.wrappers.scikit_image import SegmentationAlgorithm
from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge
from captum_test import acquire_average_auc, acquire_bestacc_attr, acquireAttribution, saveAttrData
# device = torch.device('cpu')
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
from captum.attr import (
    GradientShap,
    DeepLift,
    DeepLiftShap,
    IntegratedGradients,
    LayerConductance,
    NeuronConductance,
    NoiseTunnel,
    Saliency,
    InputXGradient,
    GuidedBackprop,
    Deconvolution,
    GuidedGradCam,
    FeatureAblation,
    ShapleyValueSampling,
    Lime,
    KernelShap
)
from captum.metrics import (
    infidelity,
    sensitivity_max
)
from captum.attr._utils.visualization import visualize_image_attr
### Acquire pixelwise attributions and replace them with ranked numbers averaged
### across segmentation with the largest contribution having the largest number
### and the smallest set to 1, which is the minimum number.
### attr - original attribution
### segm - image segmentations
def rankedAttributionsBySegm(attr, segm):
    aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm)
    totalSegm = len(sortedDict.keys()) # total segmentations
    sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
    sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
    currentRank = totalSegm
    rankedSegmImg = torch.clone(attr)
    for totalSegToHide in range(0, len(sortedKeys)):
        currentSegmentToHide = sortedKeys[totalSegToHide]
        rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank
        currentRank -= 1
    return rankedSegmImg
### Returns the mean for each segmentation having shape as the same as the input
### This function can only one attribution image at a time
def averageSegmentsOut(attr, segments):
    averagedInput = torch.clone(attr)
    sortedDict = {}
    for x in np.unique(segments):
        segmentMean = torch.mean(attr[segments == x][:])
        sortedDict[x] = float(segmentMean.detach().cpu().numpy())
        averagedInput[segments == x] = segmentMean
    return averagedInput, sortedDict
def acquireSelectivityHit(origImg, attributions, segmentations, model, charset, labels, scoring):
    # print("segmentations unique len: ", np.unique(segmentations))
    aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations)
    sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])]
    sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score
    # print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...}
    # print("aveSegmentations unique len: ", np.unique(aveSegmentations))
    # print("aveSegmentations device: ", aveSegmentations.device) # cuda:0
    # print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224)
    # print("aveSegmentations: ", aveSegmentations)
    n_correct = []
    confidenceList = [] # First index is one feature removed, second index two features removed, and so on...
    clonedImg = torch.clone(origImg)
    gt = labels
    for totalSegToHide in range(0, len(sortedKeys)):
        ### Acquire LIME prediction result
        currentSegmentToHide = sortedKeys[totalSegToHide]
        clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0
        modelOut = model(clonedImg) ### Returns a tuple of dictionaries
        confScore = scoring(modelOut).cpu().detach().numpy()
        pred, _, __ = postprocess(modelOut[0], charset, config.model_eval)
        pred = pred[0] # outputs a list, so query [0]
        if pred.lower() == gt.lower(): ### not lowercase gt labels, pred only predicts lowercase
            n_correct.append(1)
        else:
            n_correct.append(0)
        confScore = confScore[0][0]*100
        confidenceList.append(confScore)
    return n_correct, confidenceList
def _get_dataset(ds_type, paths, is_training, config, **kwargs):
    kwargs.update({
        'img_h': config.dataset_image_height,
        'img_w': config.dataset_image_width,
        'max_length': config.dataset_max_length,
        'case_sensitive': config.dataset_case_sensitive,
        'charset_path': config.dataset_charset_path,
        'data_aug': config.dataset_data_aug,
        'deteriorate_ratio': config.dataset_deteriorate_ratio,
        'is_training': is_training,
        'multiscales': config.dataset_multiscales,
        'one_hot_y': config.dataset_one_hot_y,
    })
    datasets = [ds_type(p, **kwargs) for p in paths]
    if len(datasets) > 1: return MyConcatDataset(datasets)
    else: return datasets[0]
def get_model(config):
    import importlib
    names = config.model_name.split('.')
    module_name, class_name = '.'.join(names[:-1]), names[-1]
    cls = getattr(importlib.import_module(module_name), class_name)
    model = cls(config)
    logging.info(model)
    model = model.eval()
    return model
def preprocess(img, width, height):
    img = cv2.resize(np.array(img), (width, height))
    img = transforms.ToTensor()(img).unsqueeze(0)
    mean = torch.tensor([0.485, 0.456, 0.406])
    std  = torch.tensor([0.229, 0.224, 0.225])
    return (img-mean[...,None,None]) / std[...,None,None]
def postprocess(output, charset, model_eval):
    def _get_output(last_output, model_eval):
        if isinstance(last_output, (tuple, list)):
            for res in last_output:
                if res['name'] == model_eval: output = res
        else: output = last_output
        return output
    def _decode(logit):
        """ Greed decode """
        out = F.softmax(logit, dim=2)
        pt_text, pt_scores, pt_lengths = [], [], []
        for o in out:
            text = charset.get_text(o.argmax(dim=1), padding=False, trim=False)
            text = text.split(charset.null_char)[0]  # end at end-token
            pt_text.append(text)
            pt_scores.append(o.max(dim=1)[0])
            pt_lengths.append(min(len(text) + 1, charset.max_length))  # one for end-token
        return pt_text, pt_scores, pt_lengths
    output = _get_output(output, model_eval)
    logits, pt_lengths = output['logits'], output['pt_lengths']
    pt_text, pt_scores, pt_lengths_ = _decode(logits)
    return pt_text, pt_scores, pt_lengths_
def load(model, file, device=None, strict=True):
    if device is None: device = 'cpu'
    elif isinstance(device, int): device = torch.device('cuda', device)
    assert os.path.isfile(file)
    state = torch.load(file, map_location=device)
    if set(state.keys()) == {'model', 'opt'}:
        state = state['model']
    model.load_state_dict(state, strict=strict)
    return model
def main(config):
    height = config.imgH
    width = config.imgW
    # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857', 'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
    targetDataset = settings.TARGET_DATASET # Change also the configs/train_matrn.yaml test.roots test folder
    segmRootDir = "{}/{}X{}/{}/".format(settings.SEGM_DIR, height, width, targetDataset)
    outputSelectivityPkl = "strexp_ave_{}_{}.pkl".format(settings.MODEL, targetDataset)
    outputDir = "./attributionImgs/{}/{}/".format(settings.MODEL, targetDataset)
    attrOutputDir = "./attributionData/{}/{}/".format(settings.MODEL, targetDataset)
    resumePkl = "" # Use to resume when session destroyed. Set to "" to disable
    resumePkl2 = "" # To enable global resume 2nd part. Set to "" to disable
    acquireSelectivity = True
    acquireInfidelity = False
    acquireSensitivity = False
    if not os.path.exists(outputDir):
        os.makedirs(outputDir)
    if not os.path.exists(attrOutputDir):
        os.makedirs(attrOutputDir)
    config.character = "abcdefghijklmnopqrstuvwxyz1234567890$#" # See charset_36.txt
    converter = SRNConverter(config.character, 36)
    model = get_model(config).to(device)
    model = load(model, config.model_checkpoint, device=device)
    charset = CharsetMapper(filename=config.dataset_charset_path,
                            max_length=config.dataset_max_length + 1)
    # if os.path.isdir(args.input):
    #     paths = [os.path.join(args.input, fname) for fname in os.listdir(args.input)]
    # else:
    #     paths = glob.glob(os.path.expanduser(args.input))
    #     assert paths, "The input path(s) was not found"
    # paths = sorted(paths)
    # for path in tqdm.tqdm(paths):
    #     img = PIL.Image.open(path).convert('RGB')
    #     img = preprocess(img, config.dataset_image_width, config.dataset_image_height)
    #     img = img.to(device)
    """ evaluation """
    modelCopy = copy.deepcopy(model)
    scoring_singlechar = STRScore(config=config, charsetMapper=charset, postprocessFunc=postprocess, device=device, enableSingleCharAttrAve=True)
    super_pixel_model_singlechar = torch.nn.Sequential(
        modelCopy,
        scoring_singlechar
    ).to(device)
    modelCopy.eval()
    scoring_singlechar.eval()
    super_pixel_model_singlechar.eval()
    scoring = STRScore(config=config, charsetMapper=charset, postprocessFunc=postprocess, device=device)
    ### SuperModel
    super_pixel_model = torch.nn.Sequential(
    model,
    scoring
    ).to(device)
    model.eval()
    scoring.eval()
    super_pixel_model.eval()
    selectivity_eval_results = []
    if config.blackbg:
        shapImgLs = np.zeros(shape=(1, 3, 32, 128)).astype(np.float32)
        trainList = np.array(shapImgLs)
        background = torch.from_numpy(trainList).to(device)
    # define a perturbation function for the input (used for calculating infidelity)
    # def perturb_fn(modelInputs):
    #     noise = torch.tensor(np.random.normal(0, 0.003, modelInputs.shape)).float()
    #     noise = noise.to(device)
    #     return noise, modelInputs - noise
    strict = ifnone(config.model_strict, True)
    ### Dataset not shuffled because it is not a dataloader, just a dataset
    valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
    # print("valid_ds: ", len(valid_ds[0]))
    testImgCount = 0
    if resumePkl != "":
        with open(resumePkl, 'rb') as filePkl:
            selectivity_eval_results = pickle.load(filePkl)
        for h in range(1, len(selectivity_eval_results)):
            if "testImgCount" in selectivity_eval_results[-h]:
                testImgCount = selectivity_eval_results[-h]["testImgCount"] # ResumeCount
                break
    try:
        for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
            if i <= testImgCount:
                continue
            orig_img_tensors = orig_img_tensors.unsqueeze(0)
            # print("orig_img_tensors: ", orig_img_tensors.shape) # (3, 32, 128)
            # img_rgb *= 255.0
            # img_rgb = img_rgb.astype('int')
            # print("img_rgb max: ", img_rgb.max()) ### 255
            # img_rgb = np.asarray(orig_img_tensors)
            # segmentations = segmentation_fn(img_rgb)
            # print("segmentations shape: ", segmentations.shape) # (224, 224)
            # print("segmentations min: ", segmentations.min()) 0
            # print("Unique: ", len(np.unique(segmentations))) # (70)
            results_dict = {}
            with open(segmRootDir + "{}.pkl".format(i), 'rb') as f:
                pklData = pickle.load(f)
            # segmData, labels = segAndLabels[0]
            segmDataNP = pklData["segdata"]
            labels = labels.lower() # For fair evaluation for all
            assert pklData['label'] == labels
            # labels = "lama0"
            segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
            # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
            segmTensor = segmTensor.to(device)
            # print("segmTensor shape: ", segmTensor.shape)
            # img1 = np.asarray(imgPIL.convert('L'))
            # sys.exit()
            # img1 = img1 / 255.0
            # img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
            img1 = orig_img_tensors.to(device)
            img1.requires_grad = True
            bgImg = torch.zeros(img1.shape).to(device)
            ## Required preprocessing for MATRN
            mean = torch.tensor([0.485, 0.456, 0.406])
            std  = torch.tensor([0.229, 0.224, 0.225])
            img1 = (img1-mean[...,None,None]) / std[...,None,None]
            # preds = model(img1, seqlen=converter.batch_max_length)
            input = img1
            origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
            origImgNP = gray2rgb(origImgNP)
            ### Integrated Gradients
            ig = IntegratedGradients(super_pixel_model)
            attributions = ig.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_intgrad.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_intgrad.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["intgrad_acc"] = n_correct
                results_dict["intgrad_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["intgrad_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ig.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["intgrad_sens"] = sens
            ### Gradient SHAP using zero-background
            gs = GradientShap(super_pixel_model)
            # We define a distribution of baselines and draw `n_samples` from that
            # distribution in order to estimate the expectations of gradients across all baselines
            baseline_dist = torch.zeros((1, 3, height, width))
            baseline_dist = baseline_dist.to(device)
            attributions = gs.attribute(input, baselines=baseline_dist, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_gradshap.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_gradshap.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["gradshap_acc"] = n_correct
                results_dict["gradshap_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["gradshap_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(gs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["gradshap_sens"] = sens
            ### DeepLift using zero-background
            dl = DeepLift(super_pixel_model)
            attributions = dl.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_deeplift.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_deeplift.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["deeplift_acc"] = n_correct
                results_dict["deeplift_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["deeplift_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(dl.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["deeplift_sens"] = sens
            ### Saliency
            saliency = Saliency(super_pixel_model)
            attributions = saliency.attribute(input, target=0) ### target=class0
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_saliency.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_saliency.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["saliency_acc"] = n_correct
                results_dict["saliency_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["saliency_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(saliency.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["saliency_sens"] = sens
            ### InputXGradient
            input_x_gradient = InputXGradient(super_pixel_model)
            attributions = input_x_gradient.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_inpxgrad.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_inpxgrad.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["inpxgrad_acc"] = n_correct
                results_dict["inpxgrad_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["inpxgrad_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(input_x_gradient.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["inpxgrad_sens"] = sens
            ### GuidedBackprop
            gbp = GuidedBackprop(super_pixel_model)
            attributions = gbp.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_guidedbp.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_guidedbp.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["guidedbp_acc"] = n_correct
                results_dict["guidedbp_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["guidedbp_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(gbp.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["guidedbp_sens"] = sens
            ### Deconvolution
            deconv = Deconvolution(super_pixel_model)
            attributions = deconv.attribute(input, target=0)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_deconv.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_deconv.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["deconv_acc"] = n_correct
                results_dict["deconv_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["deconv_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(deconv.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["deconv_sens"] = sens
            ### Feature ablator
            ablator = FeatureAblation(super_pixel_model)
            attributions = ablator.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_featablt.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_featablt.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["featablt_acc"] = n_correct
                results_dict["featablt_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["featablt_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ablator.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["featablt_sens"] = sens
            ### Shapley Value Sampling
            svs = ShapleyValueSampling(super_pixel_model)
            # attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate
            attributions = svs.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_shapley.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_shapley.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["shapley_acc"] = n_correct
                results_dict["shapley_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["shapley_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["shapley_sens"] = sens
            ## LIME
            interpretable_model = SkLearnRidge(alpha=1, fit_intercept=True) ### This is the default used by LIME
            lime = Lime(super_pixel_model, interpretable_model=interpretable_model)
            attributions = lime.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_lime.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_lime.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["lime_acc"] = n_correct
                results_dict["lime_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["lime_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(lime.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["lime_sens"] = sens
            ### KernelSHAP
            ks = KernelShap(super_pixel_model)
            attributions = ks.attribute(input, target=0, feature_mask=segmTensor)
            rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_kernelshap.png'.format(i))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_kernelshap.pkl', attributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, attributions, segmDataNP, model, charset, labels, scoring)
                results_dict["kernelshap_acc"] = n_correct
                results_dict["kernelshap_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model, perturb_fn, img1, attributions, normalize=True).detach().cpu().numpy())
                results_dict["kernelshap_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(ks.attribute, img1, target=0).detach().cpu().numpy())
                results_dict["kernelshap_sens"] = sens
            # Other data
            results_dict["testImgCount"] = testImgCount # 0 to N-1
            selectivity_eval_results.append(results_dict)
            with open(outputSelectivityPkl, 'wb') as f:
                pickle.dump(selectivity_eval_results, f)
            testImgCount += 1
            print("testImgCount: ", testImgCount)
    except:
        print("An exception occurred1")
    del valid_ds
    valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
    bestAttributionKeyStr = acquire_bestacc_attr(config, outputSelectivityPkl)
    bestAttrName = bestAttributionKeyStr.split('_')[0]
    ### Run another forloop
    testImgCount = 0
    if resumePkl2 != "":
        with open(resumePkl2, 'rb') as filePkl:
            selectivity_eval_results = pickle.load(filePkl)
        for h in range(1, len(selectivity_eval_results)):
            if "testImgCount2" in selectivity_eval_results[-h]:
                testImgCount = selectivity_eval_results[-h]["testImgCount2"] # ResumeCount
                break
    try:
        for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
            if i <= testImgCount:
                continue
            orig_img_tensors = orig_img_tensors.unsqueeze(0)
            results_dict = {}
            with open(segmRootDir + "{}.pkl".format(i), 'rb') as f:
                pklData = pickle.load(f)
            # segmData, labels = segAndLabels[0]
            segmDataNP = pklData["segdata"]
            labels = labels.lower() # For fair evaluation for all
            assert pklData['label'] == labels
            # labels = "lama0"
            target = converter.encode([labels], len(config.character))
            target = target[0] + 1 # Idx predicted by ABINET is 1 to N chars, not 0 to N-1
            target[target > 36] = 0 # Remove EOS predictions, set endpoint chars to 0
            segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0)
            # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation
            segmTensor = segmTensor.to(device)
            # print("segmTensor shape: ", segmTensor.shape)
            # img1 = np.asarray(imgPIL.convert('L'))
            # sys.exit()
            # img1 = img1 / 255.0
            # img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device)
            img1 = orig_img_tensors.to(device)
            img1.requires_grad = True
            bgImg = torch.zeros(img1.shape).to(device)
            ## Required preprocessing for MATRN
            mean = torch.tensor([0.485, 0.456, 0.406])
            std  = torch.tensor([0.229, 0.224, 0.225])
            img1 = (img1-mean[...,None,None]) / std[...,None,None]
            # preds = model(img1, seqlen=converter.batch_max_length)
            input = img1
            origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224)
            origImgNP = gray2rgb(origImgNP)
            charOffset = 0
            ### Local explanations only
            collectedAttributions = []
            for charIdx in range(0, len(labels)):
                scoring_singlechar.setSingleCharOutput(charIdx + charOffset)
                # print("charIdx + charOffset: ", charIdx + charOffset)
                # print("target[0]: ", target[0])
                gtClassNum = target[0][charIdx + charOffset]
                ### Gradient SHAP using zero-background
                # gs = GradientShap(super_pixel_model_singlechar)
                # baseline_dist = torch.zeros((1, 3, height, width))
                # baseline_dist = baseline_dist.to(device)
                # attributions = gs.attribute(input, baselines=baseline_dist, target=gtClassNum)
                attributions = acquireAttribution(config, super_pixel_model_singlechar, \
                input, segmTensor, gtClassNum, bestAttributionKeyStr, device)
                collectedAttributions.append(attributions)
            aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
            rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_{}_l.png'.format(i, bestAttrName))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_l.pkl', aveAttributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, charset, labels, scoring_singlechar)
                results_dict[f"{bestAttrName}_local_acc"] = n_correct
                results_dict[f"{bestAttrName}_local_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions, normalize=True).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_local_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_local_sens"] = sens
            ### Best attribution-based method using zero-background
            attributions = acquireAttribution(config, super_pixel_model, \
            input, segmTensor, 0, bestAttributionKeyStr, device)
            collectedAttributions.append(attributions)
            ### Global + Local context
            aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0)
            rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP)
            rankedAttr = rankedAttr.detach().cpu().numpy()[0][0]
            rankedAttr = gray2rgb(rankedAttr)
            mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map')
            mplotfig.savefig(outputDir + '{}_{}_gl.png'.format(i, bestAttrName))
            mplotfig.clear()
            plt.close(mplotfig)
            saveAttrData(attrOutputDir + f'{i}_{bestAttrName}_gl.pkl', aveAttributions, segmDataNP, origImgNP)
            if acquireSelectivity:
                n_correct, confidenceList = acquireSelectivityHit(img1, aveAttributions, segmDataNP, modelCopy, charset, labels, scoring_singlechar)
                results_dict[f"{bestAttrName}_global_local_acc"] = n_correct
                results_dict[f"{bestAttrName}_global_local_conf"] = confidenceList
            if acquireInfidelity:
                infid = float(infidelity(super_pixel_model_singlechar, perturb_fn, img1, aveAttributions).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_global_local_infid"] = infid
            if acquireSensitivity:
                sens = float(sensitivity_max(svs.attribute, img1, target=0).detach().cpu().numpy())
                results_dict[f"{bestAttrName}_global_local_sens"] = sens
            results_dict["testImgCount2"] = testImgCount # 0 to N-1
            selectivity_eval_results.append(results_dict)
            with open(outputSelectivityPkl, 'wb') as f:
                pickle.dump(selectivity_eval_results, f)
            testImgCount += 1
            print("testImgCount GlobLoc: ", testImgCount)
    except:
        print("An exception occurred2")
### Use to check if the model predicted the image or not. Output a pickle file with the image index.
def modelDatasetPredOnly(opt):
    # 'IIIT5k_3000', 'SVT', 'IC03_860', 'IC03_867', 'IC13_857',
    #                       'IC13_1015', 'IC15_1811', 'IC15_2077', 'SVTP', 'CUTE80'
    datasetName = "IIIT5k_3000"
    outputSelectivityPkl = "metrics_predictonly_eval_results_{}.pkl".format(datasetName)
    charset = CharsetMapper(filename=config.dataset_charset_path,
                            max_length=config.dataset_max_length + 1)
    model = get_model(config).to(device)
    model = load(model, config.model_checkpoint, device=device)
    model.eval()
    strict = ifnone(config.model_strict, True)
    ### Dataset not shuffled because it is not a dataloader, just a dataset
    valid_ds = _get_dataset(CustomImageDataset, config.dataset_test_roots, False, config)
    # print("valid_ds: ", len(valid_ds[0]))
    testImgCount = 0
    predOutput = []
    for i, (orig_img_tensors, labels, labels_tensor) in enumerate(valid_ds):
        orig_img_tensors = orig_img_tensors.unsqueeze(0).to(device)
        modelOut = model(orig_img_tensors) ### Returns a tuple of dictionaries
        pred, _, __ = postprocess(modelOut[0], charset, config.model_eval)
        pred = pred[0] # outputs a list, so query [0]
        if pred.lower() == labels.lower(): predOutput.append(1)
        else: predOutput.append(0)
        with open(outputSelectivityPkl, 'wb') as f:
            pickle.dump(predOutput, f)
if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--config', type=str, default='configs/train_matrn.yaml',
                        help='path to config file')
    parser.add_argument('--input', type=str, default='figs/test')
    parser.add_argument('--imgH', type=int, default=32, help='the height of the input image')
    parser.add_argument('--imgW', type=int, default=128, help='the width of the input image')
    parser.add_argument('--scorer', type=str, default='mean', help='See STRScore: cumprod | mean')
    parser.add_argument('--blackbg', action='store_true', default=None)
    parser.add_argument('--cuda', type=int, default=-1)
    parser.add_argument('--rgb', action='store_true', help='use rgb input')
    parser.add_argument('--checkpoint', type=str, default='workdir/train-abinet/best-train-abinet.pth')
    parser.add_argument('--model_eval', type=str, default='alignment',
                        choices=['alignment', 'vision', 'language'])
    args = parser.parse_args()
    config = Config(args.config)
    if args.checkpoint is not None: config.model_checkpoint = args.checkpoint
    if args.model_eval is not None: config.model_eval = args.model_eval
    if args.imgH is not None: config.imgH = args.imgH
    if args.imgW is not None: config.imgW = args.imgW
    if args.scorer is not None: config.scorer = args.scorer
    if args.blackbg is not None: config.blackbg = args.blackbg
    if args.rgb is not None: config.rgb = args.rgb
    config.global_phase = 'test'
    config.model_vision_checkpoint, config.model_language_checkpoint = None, None
    device = 'cpu' if args.cuda < 0 else f'cuda:{args.cuda}'
    Logger.init(config.global_workdir, config.global_name, config.global_phase)
    Logger.enable_file()
    logging.info(config)
    # acquire_average_auc(config)
    main(config)
    # modelDatasetPredOnly(config)
 |