Spaces:
Build error
Build error
| import settings | |
| import captum | |
| import numpy as np | |
| import torch | |
| import torch.nn.functional as F | |
| import torch.backends.cudnn as cudnn | |
| from utils import get_args | |
| from utils import CTCLabelConverter, AttnLabelConverter, Averager, TokenLabelConverter | |
| import string | |
| import time | |
| import sys | |
| from dataset import hierarchical_dataset, AlignCollate | |
| import validators | |
| from model import Model, STRScore | |
| from PIL import Image | |
| from lime.wrappers.scikit_image import SegmentationAlgorithm | |
| from captum._utils.models.linear_model import SkLearnLinearModel, SkLearnRidge | |
| import random | |
| import os | |
| from skimage.color import gray2rgb | |
| import pickle | |
| from train_shap_corr import getPredAndConf | |
| import re | |
| from captum_test import acquire_average_auc, saveAttrData | |
| import copy | |
| from skimage.color import gray2rgb | |
| from matplotlib import pyplot as plt | |
| from torchvision import transforms | |
| device = torch.device('cpu') | |
| from captum.attr import ( | |
| GradientShap, | |
| DeepLift, | |
| DeepLiftShap, | |
| IntegratedGradients, | |
| LayerConductance, | |
| NeuronConductance, | |
| NoiseTunnel, | |
| Saliency, | |
| InputXGradient, | |
| GuidedBackprop, | |
| Deconvolution, | |
| GuidedGradCam, | |
| FeatureAblation, | |
| ShapleyValueSampling, | |
| Lime, | |
| KernelShap | |
| ) | |
| from captum.metrics import ( | |
| infidelity, | |
| sensitivity_max | |
| ) | |
| from captum.attr._utils.visualization import visualize_image_attr | |
| ### Acquire pixelwise attributions and replace them with ranked numbers averaged | |
| ### across segmentation with the largest contribution having the largest number | |
| ### and the smallest set to 1, which is the minimum number. | |
| ### attr - original attribution | |
| ### segm - image segmentations | |
| def rankedAttributionsBySegm(attr, segm): | |
| aveSegmentations, sortedDict = averageSegmentsOut(attr[0,0], segm) | |
| totalSegm = len(sortedDict.keys()) # total segmentations | |
| sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])] | |
| sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score | |
| currentRank = totalSegm | |
| rankedSegmImg = torch.clone(attr) | |
| for totalSegToHide in range(0, len(sortedKeys)): | |
| currentSegmentToHide = sortedKeys[totalSegToHide] | |
| rankedSegmImg[0,0][segm == currentSegmentToHide] = currentRank | |
| currentRank -= 1 | |
| return rankedSegmImg | |
| ### Returns the mean for each segmentation having shape as the same as the input | |
| ### This function can only one attribution image at a time | |
| def averageSegmentsOut(attr, segments): | |
| averagedInput = torch.clone(attr) | |
| sortedDict = {} | |
| for x in np.unique(segments): | |
| segmentMean = torch.mean(attr[segments == x][:]) | |
| sortedDict[x] = float(segmentMean.detach().cpu().numpy()) | |
| averagedInput[segments == x] = segmentMean | |
| return averagedInput, sortedDict | |
| ### Output and save segmentations only for one dataset only | |
| def outputSegmOnly(opt): | |
| ### targetDataset - one dataset only, SVTP-645, CUTE80-288images | |
| targetDataset = "CUTE80" # ['IIIT5k_3000', 'SVT', 'IC03_867', 'IC13_1015', 'IC15_2077', 'SVTP', 'CUTE80'] | |
| segmRootDir = "/home/uclpc1/Documents/STR/datasets/segmentations/224X224/{}/".format(targetDataset) | |
| if not os.path.exists(segmRootDir): | |
| os.makedirs(segmRootDir) | |
| opt.eval = True | |
| ### Only IIIT5k_3000 | |
| if opt.fast_acc: | |
| # # To easily compute the total accuracy of our paper. | |
| eval_data_list = [targetDataset] | |
| else: | |
| # The evaluation datasets, dataset order is same with Table 1 in our paper. | |
| eval_data_list = [targetDataset] | |
| ### Taken from LIME | |
| segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
| max_dist=200, ratio=0.2, | |
| random_seed=random.randint(0, 1000)) | |
| for eval_data in eval_data_list: | |
| eval_data_path = os.path.join(opt.eval_data, eval_data) | |
| AlignCollate_evaluation = AlignCollate(imgH=opt.imgH, imgW=opt.imgW, keep_ratio_with_pad=opt.PAD, opt=opt) | |
| eval_data, eval_data_log = hierarchical_dataset(root=eval_data_path, opt=opt) | |
| evaluation_loader = torch.utils.data.DataLoader( | |
| eval_data, batch_size=1, | |
| shuffle=False, | |
| num_workers=int(opt.workers), | |
| collate_fn=AlignCollate_evaluation, pin_memory=True) | |
| for i, (image_tensors, labels) in enumerate(evaluation_loader): | |
| imgDataDict = {} | |
| img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
| if img_numpy.shape[0] == 1: | |
| img_numpy = gray2rgb(img_numpy[0]) | |
| # print("img_numpy shape: ", img_numpy.shape) # (224,224,3) | |
| segmOutput = segmentation_fn(img_numpy) | |
| imgDataDict['segdata'] = segmOutput | |
| imgDataDict['label'] = labels[0] | |
| outputPickleFile = segmRootDir + "{}.pkl".format(i) | |
| with open(outputPickleFile, 'wb') as f: | |
| pickle.dump(imgDataDict, f) | |
| def acquireSelectivityHit(origImg, attributions, segmentations, model, converter, labels, scoring): | |
| # print("segmentations unique len: ", np.unique(segmentations)) | |
| aveSegmentations, sortedDict = averageSegmentsOut(attributions[0,0], segmentations) | |
| sortedKeys = [k for k, v in sorted(sortedDict.items(), key=lambda item: item[1])] | |
| sortedKeys = sortedKeys[::-1] ### A list that should contain largest to smallest score | |
| # print("sortedDict: ", sortedDict) # {0: -5.51e-06, 1: -1.469e-05, 2: -3.06e-05,...} | |
| # print("aveSegmentations unique len: ", np.unique(aveSegmentations)) | |
| # print("aveSegmentations device: ", aveSegmentations.device) # cuda:0 | |
| # print("aveSegmentations shape: ", aveSegmentations.shape) # (224,224) | |
| # print("aveSegmentations: ", aveSegmentations) | |
| n_correct = [] | |
| confidenceList = [] # First index is one feature removed, second index two features removed, and so on... | |
| clonedImg = torch.clone(origImg) | |
| gt = str(labels) | |
| for totalSegToHide in range(0, len(sortedKeys)): | |
| ### Acquire LIME prediction result | |
| currentSegmentToHide = sortedKeys[totalSegToHide] | |
| clonedImg[0,0][segmentations == currentSegmentToHide] = 0.0 | |
| pred, confScore = getPredAndConf(opt, model, scoring, clonedImg, converter, np.array([gt])) | |
| # To evaluate 'case sensitive model' with alphanumeric and case insensitve setting. | |
| if opt.sensitive and opt.data_filtering_off: | |
| pred = pred.lower() | |
| gt = gt.lower() | |
| alphanumeric_case_insensitve = '0123456789abcdefghijklmnopqrstuvwxyz' | |
| out_of_alphanumeric_case_insensitve = f"[^{alphanumeric_case_insensitve}]" | |
| pred = re.sub(out_of_alphanumeric_case_insensitve, '', pred) | |
| gt = re.sub(out_of_alphanumeric_case_insensitve, '', gt) | |
| if pred == gt: | |
| n_correct.append(1) | |
| else: | |
| n_correct.append(0) | |
| confScore = confScore[0][0]*100 | |
| confidenceList.append(confScore) | |
| return n_correct, confidenceList | |
| ### Once you have the selectivity_eval_results.pkl file, | |
| def acquire_selectivity_auc(opt, pkl_filename=None): | |
| if pkl_filename is None: | |
| pkl_filename = "/home/goo/str/str_vit_dataexplain_lambda/metrics_sensitivity_eval_results_CUTE80.pkl" # VITSTR | |
| accKeys = [] | |
| with open(pkl_filename, 'rb') as f: | |
| selectivity_data = pickle.load(f) | |
| for resDictIdx, resDict in enumerate(selectivity_data): | |
| keylistAcc = [] | |
| keylistConf = [] | |
| metricsKeys = resDict.keys() | |
| for keyStr in resDict.keys(): | |
| if "_acc" in keyStr: keylistAcc.append(keyStr) | |
| if "_conf" in keyStr: keylistConf.append(keyStr) | |
| # Need to check if network correctly predicted the image | |
| for metrics_accStr in keylistAcc: | |
| if 1 not in resDict[metrics_accStr]: print("resDictIdx") | |
| # Single directory STRExp explanations output demo | |
| def sampleDemo(opt, modelName): | |
| targetDataset = "SVTP" | |
| demoImgDir = "demo_image/" | |
| outputDir = "demo_image_output/" | |
| if not os.path.exists(outputDir): | |
| os.makedirs(outputDir) | |
| segmentation_fn = SegmentationAlgorithm('quickshift', kernel_size=4, | |
| max_dist=200, ratio=0.2, | |
| random_seed=random.randint(0, 1000)) | |
| if modelName=="vitstr": | |
| if opt.Transformer: | |
| converter = TokenLabelConverter(opt) | |
| elif 'CTC' in opt.Prediction: | |
| converter = CTCLabelConverter(opt.character) | |
| else: | |
| converter = AttnLabelConverter(opt.character) | |
| opt.num_class = len(converter.character) | |
| if opt.rgb: | |
| opt.input_channel = 3 | |
| model_obj = Model(opt) | |
| model = torch.nn.DataParallel(model_obj).to(device) | |
| modelCopy = copy.deepcopy(model) | |
| """ evaluation """ | |
| scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True) | |
| super_pixel_model_singlechar = torch.nn.Sequential( | |
| # super_pixler, | |
| # numpy2torch_converter, | |
| modelCopy, | |
| scoring_singlechar | |
| ).to(device) | |
| modelCopy.eval() | |
| scoring_singlechar.eval() | |
| super_pixel_model_singlechar.eval() | |
| # Single Char Attribution Averaging | |
| # enableSingleCharAttrAve - set to True | |
| scoring = STRScore(opt=opt, converter=converter, device=device) | |
| super_pixel_model = torch.nn.Sequential( | |
| # super_pixler, | |
| # numpy2torch_converter, | |
| model, | |
| scoring | |
| ).to(device) | |
| model.eval() | |
| scoring.eval() | |
| super_pixel_model.eval() | |
| elif modelName=="parseq": | |
| model = torch.hub.load('baudm/parseq', 'parseq', pretrained=True) | |
| # checkpoint = torch.hub.load_state_dict_from_url('https://github.com/baudm/parseq/releases/download/v1.0.0/parseq-bb5792a6.pt', map_location="cpu") | |
| # # state_dict = {key.replace("module.", ""): value for key, value in checkpoint["state_dict"].items()} | |
| # model.load_state_dict(checkpoint) | |
| model = model.to(device) | |
| model_obj = model | |
| converter = TokenLabelConverter(opt) | |
| modelCopy = copy.deepcopy(model) | |
| """ evaluation """ | |
| scoring_singlechar = STRScore(opt=opt, converter=converter, device=device, enableSingleCharAttrAve=True, model=modelCopy) | |
| super_pixel_model_singlechar = torch.nn.Sequential( | |
| # super_pixler, | |
| # numpy2torch_converter, | |
| modelCopy, | |
| scoring_singlechar | |
| ).to(device) | |
| modelCopy.eval() | |
| scoring_singlechar.eval() | |
| super_pixel_model_singlechar.eval() | |
| # Single Char Attribution Averaging | |
| # enableSingleCharAttrAve - set to True | |
| scoring = STRScore(opt=opt, converter=converter, device=device, model=model) | |
| super_pixel_model = torch.nn.Sequential( | |
| # super_pixler, | |
| # numpy2torch_converter, | |
| model, | |
| scoring | |
| ).to(device) | |
| model.eval() | |
| scoring.eval() | |
| super_pixel_model.eval() | |
| if opt.blackbg: | |
| shapImgLs = np.zeros(shape=(1, 1, 224, 224)).astype(np.float32) | |
| trainList = np.array(shapImgLs) | |
| background = torch.from_numpy(trainList).to(device) | |
| opt.eval = True | |
| for path, subdirs, files in os.walk(demoImgDir): | |
| for name in files: | |
| nameNoExt = name.split('.')[0] | |
| labels = nameNoExt.split("_")[-1] | |
| fullfilename = os.path.join(demoImgDir, name) # Value | |
| pilImg = Image.open(fullfilename) | |
| pilImg = pilImg.resize((opt.imgW, opt.imgH)) | |
| # fullfilename: /data/goo/strattr/attributionData/trba/CUTE80/66_featablt.pkl | |
| ### Single char averaging | |
| if modelName == 'vitstr': | |
| orig_img_tensors = transforms.ToTensor()(pilImg) | |
| orig_img_tensors = torch.mean(orig_img_tensors, dim=0).unsqueeze(0).unsqueeze(0) | |
| image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0 | |
| imgDataDict = {} | |
| img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
| if img_numpy.shape[0] == 1: | |
| img_numpy = gray2rgb(img_numpy[0]) | |
| # print("img_numpy shape: ", img_numpy.shape) # (32,100,3) | |
| segmOutput = segmentation_fn(img_numpy) | |
| # print("orig_img_tensors shape: ", orig_img_tensors.shape) # (3, 224, 224) | |
| # print("orig_img_tensors max: ", orig_img_tensors.max()) # 0.6824 (1) | |
| # print("orig_img_tensors min: ", orig_img_tensors.min()) # 0.0235 (0) | |
| # sys.exit() | |
| results_dict = {} | |
| aveAttr = [] | |
| aveAttr_charContrib = [] | |
| # segmData, labels = segAndLabels[0] | |
| target = converter.encode([labels]) | |
| # labels: RONALDO | |
| segmDataNP = segmOutput | |
| segmTensor = torch.from_numpy(segmDataNP).unsqueeze(0).unsqueeze(0) | |
| # print("segmTensor min: ", segmTensor.min()) # 0 starting segmentation | |
| segmTensor = segmTensor.to(device) | |
| # print("segmTensor shape: ", segmTensor.shape) | |
| # img1 = np.asarray(imgPIL.convert('L')) | |
| # sys.exit() | |
| # img1 = img1 / 255.0 | |
| # img1 = torch.from_numpy(img1).unsqueeze(0).unsqueeze(0).type(torch.FloatTensor).to(device) | |
| img1 = orig_img_tensors.to(device) | |
| img1.requires_grad = True | |
| bgImg = torch.zeros(img1.shape).to(device) | |
| input = img1 | |
| origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
| origImgNP = gray2rgb(origImgNP) | |
| charOffset = 1 | |
| # preds = model(img1, seqlen=converter.batch_max_length) | |
| ### Local explanations only | |
| collectedAttributions = [] | |
| for charIdx in range(0, len(labels)): | |
| scoring_singlechar.setSingleCharOutput(charIdx + charOffset) | |
| gtClassNum = target[0][charIdx + charOffset] | |
| ### Shapley Value Sampling | |
| svs = ShapleyValueSampling(super_pixel_model_singlechar) | |
| # attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate | |
| attributions = svs.attribute(input, target=gtClassNum, feature_mask=segmTensor) | |
| collectedAttributions.append(attributions) | |
| aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
| if not torch.isnan(aveAttributions).any(): | |
| rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
| rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
| rankedAttr = gray2rgb(rankedAttr) | |
| mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
| mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt)) | |
| mplotfig.clear() | |
| plt.close(mplotfig) | |
| ### Shapley Value Sampling | |
| svs = ShapleyValueSampling(super_pixel_model) | |
| # attr = svs.attribute(input, target=0, n_samples=200) ### Individual pixels, too long to calculate | |
| attributions = svs.attribute(input, target=0, feature_mask=segmTensor) | |
| if not torch.isnan(attributions).any(): | |
| collectedAttributions.append(attributions) | |
| rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
| rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
| rankedAttr = gray2rgb(rankedAttr) | |
| mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
| mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt)) | |
| mplotfig.clear() | |
| plt.close(mplotfig) | |
| ### Global + Local context | |
| aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
| if not torch.isnan(aveAttributions).any(): | |
| rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
| rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
| rankedAttr = gray2rgb(rankedAttr) | |
| mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
| mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt)) | |
| mplotfig.clear() | |
| plt.close(mplotfig) | |
| return | |
| elif modelName == 'parseq': | |
| orig_img_tensors = transforms.ToTensor()(pilImg).unsqueeze(0) | |
| img1 = orig_img_tensors.to(device) | |
| # image_tensors = ((torch.clone(orig_img_tensors) + 1.0) / 2.0) * 255.0 | |
| image_tensors = torch.mean(orig_img_tensors, dim=1).unsqueeze(0).unsqueeze(0) | |
| imgDataDict = {} | |
| img_numpy = image_tensors.cpu().detach().numpy()[0] ### Need to set batch size to 1 only | |
| if img_numpy.shape[0] == 1: | |
| img_numpy = gray2rgb(img_numpy[0]) | |
| # print("img_numpy shape: ", img_numpy.shape) # (1, 32, 128, 3) | |
| segmOutput = segmentation_fn(img_numpy[0]) | |
| results_dict = {} | |
| aveAttr = [] | |
| aveAttr_charContrib = [] | |
| target = converter.encode([labels]) | |
| # labels: RONALDO | |
| segmDataNP = segmOutput | |
| img1.requires_grad = True | |
| bgImg = torch.zeros(img1.shape).to(device) | |
| # preds = model(img1, seqlen=converter.batch_max_length) | |
| input = img1 | |
| origImgNP = torch.clone(orig_img_tensors).detach().cpu().numpy()[0][0] # (1, 1, 224, 224) | |
| origImgNP = gray2rgb(origImgNP) | |
| charOffset = 0 | |
| img1 = transforms.Normalize(0.5, 0.5)(img1) # Between -1 to 1 | |
| target = converter.encode([labels]) | |
| ### Local explanations only | |
| collectedAttributions = [] | |
| for charIdx in range(0, len(labels)): | |
| scoring_singlechar.setSingleCharOutput(charIdx + charOffset) | |
| gtClassNum = target[0][charIdx + charOffset] | |
| gs = GradientShap(super_pixel_model_singlechar) | |
| baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW)) | |
| baseline_dist = baseline_dist.to(device) | |
| attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
| collectedAttributions.append(attributions) | |
| aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
| if not torch.isnan(aveAttributions).any(): | |
| rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
| rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
| rankedAttr = gray2rgb(rankedAttr) | |
| mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
| mplotfig.savefig(outputDir + '{}_shapley_l.png'.format(nameNoExt)) | |
| mplotfig.clear() | |
| plt.close(mplotfig) | |
| ### Local Sampling | |
| gs = GradientShap(super_pixel_model) | |
| baseline_dist = torch.zeros((1, 3, opt.imgH, opt.imgW)) | |
| baseline_dist = baseline_dist.to(device) | |
| attributions = gs.attribute(input, baselines=baseline_dist, target=0) | |
| if not torch.isnan(attributions).any(): | |
| collectedAttributions.append(attributions) | |
| rankedAttr = rankedAttributionsBySegm(attributions, segmDataNP) | |
| rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
| rankedAttr = gray2rgb(rankedAttr) | |
| mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
| mplotfig.savefig(outputDir + '{}_shapley.png'.format(nameNoExt)) | |
| mplotfig.clear() | |
| plt.close(mplotfig) | |
| ### Global + Local context | |
| aveAttributions = torch.mean(torch.cat(collectedAttributions,dim=0), dim=0).unsqueeze(0) | |
| if not torch.isnan(aveAttributions).any(): | |
| rankedAttr = rankedAttributionsBySegm(aveAttributions, segmDataNP) | |
| rankedAttr = rankedAttr.detach().cpu().numpy()[0][0] | |
| rankedAttr = gray2rgb(rankedAttr) | |
| mplotfig, _ = visualize_image_attr(rankedAttr, origImgNP, method='blended_heat_map', cmap='RdYlGn') | |
| mplotfig.savefig(outputDir + '{}_shapley_gl.png'.format(nameNoExt)) | |
| mplotfig.clear() | |
| plt.close(mplotfig) | |
| continue | |
| if __name__ == '__main__': | |
| # deleteInf() | |
| opt = get_args(is_train=False) | |
| """ vocab / character number configuration """ | |
| if opt.sensitive: | |
| opt.character = string.printable[:-6] # same with ASTER setting (use 94 char). | |
| cudnn.benchmark = True | |
| cudnn.deterministic = True | |
| # opt.num_gpu = torch.cuda.device_count() | |
| # combineBestDataXAI(opt) | |
| # acquire_average_auc(opt) | |
| # acquireSingleCharAttrAve(opt) | |
| modelName = "parseq" | |
| opt.modelName = modelName | |
| opt.eval_data = "datasets/data_lmdb_release/evaluation" | |
| if modelName=="vitstr": | |
| opt.benchmark_all_eval = True | |
| opt.Transformation = "None" | |
| opt.FeatureExtraction = "None" | |
| opt.SequenceModeling = "None" | |
| opt.Prediction = "None" | |
| opt.Transformer = True | |
| opt.sensitive = True | |
| opt.imgH = 224 | |
| opt.imgW = 224 | |
| opt.data_filtering_off = True | |
| opt.TransformerModel= "vitstr_base_patch16_224" | |
| opt.saved_model = "pretrained/vitstr_base_patch16_224_aug.pth" | |
| opt.batch_size = 1 | |
| opt.workers = 0 | |
| opt.scorer = "mean" | |
| opt.blackbg = True | |
| elif modelName=="parseq": | |
| opt.benchmark_all_eval = True | |
| opt.Transformation = "None" | |
| opt.FeatureExtraction = "None" | |
| opt.SequenceModeling = "None" | |
| opt.Prediction = "None" | |
| opt.Transformer = True | |
| opt.sensitive = True | |
| opt.imgH = 32 | |
| opt.imgW = 128 | |
| opt.data_filtering_off = True | |
| opt.batch_size = 1 | |
| opt.workers = 0 | |
| opt.scorer = "mean" | |
| opt.blackbg = True | |
| sampleDemo(opt, modelName) | |