Spaces:
Build error
Build error
| # Scene Text Recognition Model Hub | |
| # Copyright 2022 Darwin Bautista | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # https://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import re | |
| from abc import ABC, abstractmethod | |
| from itertools import groupby | |
| from typing import List, Optional, Tuple | |
| import torch | |
| from torch import Tensor | |
| from torch.nn.utils.rnn import pad_sequence | |
| class CharsetAdapter: | |
| """Transforms labels according to the target charset.""" | |
| def __init__(self, target_charset) -> None: | |
| super().__init__() | |
| self.lowercase_only = target_charset == target_charset.lower() | |
| self.uppercase_only = target_charset == target_charset.upper() | |
| self.unsupported = f'[^{re.escape(target_charset)}]' | |
| def __call__(self, label): | |
| if self.lowercase_only: | |
| label = label.lower() | |
| elif self.uppercase_only: | |
| label = label.upper() | |
| # Remove unsupported characters | |
| label = re.sub(self.unsupported, '', label) | |
| return label | |
| class BaseTokenizer(ABC): | |
| def __init__(self, charset: str, specials_first: tuple = (), specials_last: tuple = ()) -> None: | |
| self._itos = specials_first + tuple(charset) + specials_last | |
| self._stoi = {s: i for i, s in enumerate(self._itos)} | |
| def __len__(self): | |
| return len(self._itos) | |
| def _tok2ids(self, tokens: str) -> List[int]: | |
| return [self._stoi[s] for s in tokens] | |
| def _ids2tok(self, token_ids: List[int], join: bool = True) -> str: | |
| tokens = [self._itos[i] for i in token_ids] | |
| return ''.join(tokens) if join else tokens | |
| def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor: | |
| """Encode a batch of labels to a representation suitable for the model. | |
| Args: | |
| labels: List of labels. Each can be of arbitrary length. | |
| device: Create tensor on this device. | |
| Returns: | |
| Batched tensor representation padded to the max label length. Shape: N, L | |
| """ | |
| raise NotImplementedError | |
| def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]: | |
| """Internal method which performs the necessary filtering prior to decoding.""" | |
| raise NotImplementedError | |
| def decode(self, token_dists: Tensor, raw: bool = False) -> Tuple[List[str], List[Tensor]]: | |
| """Decode a batch of token distributions. | |
| Args: | |
| token_dists: softmax probabilities over the token distribution. Shape: N, L, C | |
| raw: return unprocessed labels (will return list of list of strings) | |
| Returns: | |
| list of string labels (arbitrary length) and | |
| their corresponding sequence probabilities as a list of Tensors | |
| """ | |
| batch_tokens = [] | |
| batch_probs = [] | |
| for dist in token_dists: | |
| probs, ids = dist.max(-1) # greedy selection | |
| if not raw: | |
| probs, ids = self._filter(probs, ids) | |
| tokens = self._ids2tok(ids, not raw) | |
| batch_tokens.append(tokens) | |
| batch_probs.append(probs) | |
| return batch_tokens, batch_probs | |
| class Tokenizer(BaseTokenizer): | |
| BOS = '[B]' | |
| EOS = '[E]' | |
| PAD = '[P]' | |
| def __init__(self, charset: str) -> None: | |
| specials_first = (self.EOS,) | |
| specials_last = (self.BOS, self.PAD) | |
| super().__init__(charset, specials_first, specials_last) | |
| self.eos_id, self.bos_id, self.pad_id = [self._stoi[s] for s in specials_first + specials_last] | |
| def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor: | |
| batch = [torch.as_tensor([self.bos_id] + self._tok2ids(y) + [self.eos_id], dtype=torch.long, device=device) | |
| for y in labels] | |
| return pad_sequence(batch, batch_first=True, padding_value=self.pad_id) | |
| def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]: | |
| ids = ids.tolist() | |
| try: | |
| eos_idx = ids.index(self.eos_id) | |
| except ValueError: | |
| eos_idx = len(ids) # Nothing to truncate. | |
| # Truncate after EOS | |
| ids = ids[:eos_idx] | |
| probs = probs[:eos_idx + 1] # but include prob. for EOS (if it exists) | |
| return probs, ids | |
| class CTCTokenizer(BaseTokenizer): | |
| BLANK = '[B]' | |
| def __init__(self, charset: str) -> None: | |
| # BLANK uses index == 0 by default | |
| super().__init__(charset, specials_first=(self.BLANK,)) | |
| self.blank_id = self._stoi[self.BLANK] | |
| def encode(self, labels: List[str], device: Optional[torch.device] = None) -> Tensor: | |
| # We use a padded representation since we don't want to use CUDNN's CTC implementation | |
| batch = [torch.as_tensor(self._tok2ids(y), dtype=torch.long, device=device) for y in labels] | |
| return pad_sequence(batch, batch_first=True, padding_value=self.blank_id) | |
| def _filter(self, probs: Tensor, ids: Tensor) -> Tuple[Tensor, List[int]]: | |
| # Best path decoding: | |
| ids = list(zip(*groupby(ids.tolist())))[0] # Remove duplicate tokens | |
| ids = [x for x in ids if x != self.blank_id] # Remove BLANKs | |
| # `probs` is just pass-through since all positions are considered part of the path | |
| return probs, ids | |