Spaces:
Runtime error
Runtime error
File size: 10,599 Bytes
22257c4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
import torch
# this ensures that the current MacOS version is at least 12.3+
print(torch.backends.mps.is_available())
# this ensures that the current current PyTorch installation was built with MPS activated.
print(torch.backends.mps.is_built())
# %%
import ipywidgets as widgets
import glob
import matplotlib.pyplot as plt
print("Choose the image name to animate: (saved in folder 'MakeItTalk/examples/')")
img_list = glob.glob1('examples', '*.jpg')
img_list.sort()
img_list = [item.split('.')[0] for item in img_list]
default_head_name = widgets.Dropdown(options=img_list, value='marlene_v2')
def on_change(change):
if change['type'] == 'change' and change['name'] == 'value':
plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))
plt.axis('off')
plt.show()
default_head_name.observe(on_change)
display(default_head_name)
plt.imshow(plt.imread('MakeItTalk/examples/{}.jpg'.format(default_head_name.value)))
plt.axis('off')
plt.show()
# %%
#@markdown # Animation Controllers
#@markdown Amplify the lip motion in horizontal direction
AMP_LIP_SHAPE_X = 2 #@param {type:"slider", min:0.5, max:5.0, step:0.1}
#@markdown Amplify the lip motion in vertical direction
AMP_LIP_SHAPE_Y = 2 #@param {type:"slider", min:0.5, max:5.0, step:0.1}
#@markdown Amplify the head pose motion (usually smaller than 1.0, put it to 0. for a static head pose)
AMP_HEAD_POSE_MOTION = 0.35 #@param {type:"slider", min:0.0, max:1.0, step:0.05}
#@markdown Add naive eye blink
ADD_NAIVE_EYE = True #@param ["False", "True"] {type:"raw"}
#@markdown If your image has an opened mouth, put this as True, else False
CLOSE_INPUT_FACE_MOUTH = True #@param ["False", "True"] {type:"raw"}
#@markdown # Landmark Adjustment
#@markdown Adjust upper lip thickness (postive value means thicker)
UPPER_LIP_ADJUST = -1 #@param {type:"slider", min:-3.0, max:3.0, step:1.0}
#@markdown Adjust lower lip thickness (postive value means thicker)
LOWER_LIP_ADJUST = -1 #@param {type:"slider", min:-3.0, max:3.0, step:1.0}
#@markdown Adjust static lip width (in multipication)
LIP_WIDTH_ADJUST = 1.0 #@param {type:"slider", min:0.8, max:1.2, step:0.01}
# %%
import sys
sys.path.append("thirdparty/AdaptiveWingLoss")
import os, glob
import numpy as np
import cv2
import argparse
from src.approaches.train_image_translation import Image_translation_block
import torch
import pickle
import face_alignment
from face_alignment import face_alignment
from src.autovc.AutoVC_mel_Convertor_retrain_version import AutoVC_mel_Convertor
import shutil
import time
import util.utils as util
from scipy.signal import savgol_filter
from src.approaches.train_audio2landmark import Audio2landmark_model
# %%
sys.stdout = open(os.devnull, 'a')
parser = argparse.ArgumentParser()
parser.add_argument('--jpg', type=str, default='{}.jpg'.format(default_head_name.value))
parser.add_argument('--close_input_face_mouth', default=CLOSE_INPUT_FACE_MOUTH, action='store_true')
parser.add_argument('--load_AUTOVC_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_autovc.pth')
parser.add_argument('--load_a2l_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_speaker_branch.pth')
parser.add_argument('--load_a2l_C_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_content_branch.pth') #ckpt_audio2landmark_c.pth')
parser.add_argument('--load_G_name', type=str, default='MakeItTalk/examples/ckpt/ckpt_116_i2i_comb.pth') #ckpt_image2image.pth') #ckpt_i2i_finetune_150.pth') #c
parser.add_argument('--amp_lip_x', type=float, default=AMP_LIP_SHAPE_X)
parser.add_argument('--amp_lip_y', type=float, default=AMP_LIP_SHAPE_Y)
parser.add_argument('--amp_pos', type=float, default=AMP_HEAD_POSE_MOTION)
parser.add_argument('--reuse_train_emb_list', type=str, nargs='+', default=[]) # ['iWeklsXc0H8']) #['45hn7-LXDX8']) #['E_kmpT-EfOg']) #'iWeklsXc0H8', '29k8RtSUjE0', '45hn7-LXDX8',
parser.add_argument('--add_audio_in', default=False, action='store_true')
parser.add_argument('--comb_fan_awing', default=False, action='store_true')
parser.add_argument('--output_folder', type=str, default='examples')
parser.add_argument('--test_end2end', default=True, action='store_true')
parser.add_argument('--dump_dir', type=str, default='', help='')
parser.add_argument('--pos_dim', default=7, type=int)
parser.add_argument('--use_prior_net', default=True, action='store_true')
parser.add_argument('--transformer_d_model', default=32, type=int)
parser.add_argument('--transformer_N', default=2, type=int)
parser.add_argument('--transformer_heads', default=2, type=int)
parser.add_argument('--spk_emb_enc_size', default=16, type=int)
parser.add_argument('--init_content_encoder', type=str, default='')
parser.add_argument('--lr', type=float, default=1e-3, help='learning rate')
parser.add_argument('--reg_lr', type=float, default=1e-6, help='weight decay')
parser.add_argument('--write', default=False, action='store_true')
parser.add_argument('--segment_batch_size', type=int, default=1, help='batch size')
parser.add_argument('--emb_coef', default=3.0, type=float)
parser.add_argument('--lambda_laplacian_smooth_loss', default=1.0, type=float)
parser.add_argument('--use_11spk_only', default=False, action='store_true')
parser.add_argument('-f')
opt_parser = parser.parse_args()
# %%
img = cv2.imread('MakeItTalk/examples/' + opt_parser.jpg)
plt.imshow(img)
# %%
predictor = face_alignment.FaceAlignment(face_alignment.LandmarksType._3D, device='mps', flip_input=True)
shapes = predictor.get_landmarks(img)
if (not shapes or len(shapes) != 1):
print('Cannot detect face landmarks. Exit.')
exit(-1)
shape_3d = shapes[0]
# %%
if(opt_parser.close_input_face_mouth):
util.close_input_face_mouth(shape_3d)
shape_3d[48:, 0] = (shape_3d[48:, 0] - np.mean(shape_3d[48:, 0])) * LIP_WIDTH_ADJUST + np.mean(shape_3d[48:, 0]) # wider lips
shape_3d[49:54, 1] -= UPPER_LIP_ADJUST # thinner upper lip
shape_3d[55:60, 1] += LOWER_LIP_ADJUST # thinner lower lip
shape_3d[[37,38,43,44], 1] -=2. # larger eyes
shape_3d[[40,41,46,47], 1] +=2. # larger eyes
shape_3d, scale, shift = util.norm_input_face(shape_3d)
print("Loaded Image...", file=sys.stderr)
# %%
au_data = []
au_emb = []
ains = glob.glob1('examples', '*.wav')
ains = [item for item in ains if item != 'tmp.wav']
ains.sort()
for ain in ains:
os.system('ffmpeg -y -loglevel error -i MakeItTalk/examples/{} -ar 16000 MakeItTalk/examples/tmp.wav'.format(ain))
shutil.copyfile('MakeItTalk/examples/tmp.wav', 'MakeItTalk/examples/{}'.format(ain))
# au embedding
from thirdparty.resemblyer_util.speaker_emb import get_spk_emb
me, ae = get_spk_emb('MakeItTalk/examples/{}'.format(ain))
au_emb.append(me.reshape(-1))
print('Processing audio file', ain)
c = AutoVC_mel_Convertor('examples')
au_data_i = c.convert_single_wav_to_autovc_input(audio_filename=os.path.join('examples', ain),
autovc_model_path=opt_parser.load_AUTOVC_name)
au_data += au_data_i
if(os.path.isfile('MakeItTalk/examples/tmp.wav')):
os.remove('MakeItTalk/examples/tmp.wav')
print("Loaded audio...", file=sys.stderr)
# %%
# landmark fake placeholder
fl_data = []
rot_tran, rot_quat, anchor_t_shape = [], [], []
for au, info in au_data:
au_length = au.shape[0]
fl = np.zeros(shape=(au_length, 68 * 3))
fl_data.append((fl, info))
rot_tran.append(np.zeros(shape=(au_length, 3, 4)))
rot_quat.append(np.zeros(shape=(au_length, 4)))
anchor_t_shape.append(np.zeros(shape=(au_length, 68 * 3)))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_fl.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_fl_interp.pickle'))
if(os.path.exists(os.path.join('examples', 'dump', 'random_val_au.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_au.pickle'))
if (os.path.exists(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))):
os.remove(os.path.join('examples', 'dump', 'random_val_gaze.pickle'))
with open(os.path.join('examples', 'dump', 'random_val_fl.pickle'), 'wb') as fp:
pickle.dump(fl_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_au.pickle'), 'wb') as fp:
pickle.dump(au_data, fp)
with open(os.path.join('examples', 'dump', 'random_val_gaze.pickle'), 'wb') as fp:
gaze = {'rot_trans':rot_tran, 'rot_quat':rot_quat, 'anchor_t_shape':anchor_t_shape}
pickle.dump(gaze, fp)
# %%
model = Audio2landmark_model(opt_parser, jpg_shape=shape_3d)
if(len(opt_parser.reuse_train_emb_list) == 0):
model.test(au_emb=au_emb)
else:
model.test(au_emb=None)
print("Audio->Landmark...", file=sys.stderr)
# %%
fls = glob.glob1('examples', 'pred_fls_*.txt')
fls.sort()
for i in range(0,len(fls)):
fl = np.loadtxt(os.path.join('examples', fls[i])).reshape((-1, 68,3))
print(fls[i])
fl[:, :, 0:2] = -fl[:, :, 0:2]
fl[:, :, 0:2] = fl[:, :, 0:2] / scale - shift
if (ADD_NAIVE_EYE):
fl = util.add_naive_eye(fl)
# additional smooth
fl = fl.reshape((-1, 204))
fl[:, :48 * 3] = savgol_filter(fl[:, :48 * 3], 15, 3, axis=0)
fl[:, 48*3:] = savgol_filter(fl[:, 48*3:], 5, 3, axis=0)
fl = fl.reshape((-1, 68, 3))
''' STEP 6: Imag2image translation '''
model = Image_translation_block(opt_parser, single_test=True)
with torch.no_grad():
model.single_test(jpg=img, fls=fl, filename=fls[i], prefix=opt_parser.jpg.split('.')[0])
print('finish image2image gen')
os.remove(os.path.join('examples', fls[i]))
print("{} / {}: Landmark->Face...".format(i+1, len(fls)), file=sys.stderr)
print("Done!", file=sys.stderr)
# %% [markdown]
# # Generated video from image and sound clip
# %%
from IPython.display import Video
Video("MakeItTalk/examples/marlenes_v1.mp4")
# %%
# %%
from IPython.display import HTML
from base64 import b64encode
for ain in ains:
OUTPUT_MP4_NAME = '{}_pred_fls_{}_audio_embed.mp4'.format(
opt_parser.jpg.split('.')[0],
ain.split('.')[0]
)
mp4 = open('MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME),'rb').read()
data_url = "data:video/mp4;base64," + b64encode(mp4).decode()
print('Display animation: MakeItTalk/examples/{}'.format(OUTPUT_MP4_NAME), file=sys.stderr)
display(HTML("""
<video width=600 controls>
<source src="%s" type="video/mp4">
</video>
""" % data_url))
|