File size: 2,162 Bytes
143c05b
19dfe9f
 
 
7b0ea0f
4fd791e
 
7b0ea0f
 
143c05b
19dfe9f
 
 
7b0ea0f
 
19dfe9f
143c05b
e8ba5e8
19dfe9f
e8ba5e8
 
 
7b0ea0f
e8ba5e8
 
7b0ea0f
 
 
 
 
 
 
19dfe9f
7b0ea0f
 
 
4fd791e
7b0ea0f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19dfe9f
 
7b0ea0f
 
e8ba5e8
19dfe9f
7b0ea0f
 
 
19dfe9f
 
 
 
4fd791e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
import gradio as gr
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
import torch
from PIL import Image
import json
import vl_convert as vlc  
from io import BytesIO

device = "cuda" if torch.cuda.is_available() else "cpu"

# Load the processor and model
processor = AutoProcessor.from_pretrained("google/matcha-base")
processor.image_processor.is_vqa = False

model = Pix2StructForConditionalGeneration.from_pretrained("martinsinnona/visdecode_B").to(device)
model.eval()

def generate(image):

    #inputs = processor(images=image, return_tensors="pt", max_patches=1024).to(device)
    #generated_ids = model.generate(flattened_patches=inputs.flattened_patches, attention_mask=inputs.attention_mask, max_length=600)
    #generated_caption = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
    
    generated_caption = "{'mark': 'bar', 'encoding': {'x': {'field': '', 'type': 'ordinal'}, 'y': {'field': '', 'type': 'quantitative'}}, 'data': {'values': [{'x': 0, 'y': 5.6}, {'x': 1, 'y': 6.7}, {'x': 2, 'y': 5.0}, {'x': 3, 'y': 18.7}]}}"

    # Generate the Vega image
    vega = string_to_vega(generated_caption)
    vega_image = draw_vega(vega)
    
    return generated_caption, vega_image

def draw_vega(vega, scale=3):

    spec = json.dumps(vega, indent=4)
    png_data = vlc.vegalite_to_png(vl_spec=spec, scale=scale)

    return Image.open(BytesIO(png_data))

def string_to_vega(string):

    string = string.replace("'", "\"")
    vega = json.loads(string)

    for axis in ["x", "y"]:
        field = vega["encoding"][axis]["field"]
        if field == "":
            vega["encoding"][axis]["field"] = axis
            vega["encoding"][axis]["title"] = ""
        else:
            for entry in vega["data"]["values"]:
                entry[field] = entry.pop(axis)
    return vega

# Create the Gradio interface
iface = gr.Interface(

    fn=generate,
    inputs=gr.Image(type="pil"),
    outputs=[gr.Textbox(), gr.Image(type="pil")],
    title="Image to Vega-Lite",
    description="Upload an image to generate vega-lite"
)

# Launch the interface
if __name__ == "__main__":
    iface.launch(share=True)