Spaces:
Running
on
Zero
Running
on
Zero
Martin Tomov
commited on
app.py update, change of outputs
Browse files
app.py
CHANGED
@@ -1,5 +1,5 @@
|
|
1 |
import os
|
2 |
-
os.system('pip install gradio==4.29.0')
|
3 |
|
4 |
import random
|
5 |
from dataclasses import dataclass
|
@@ -132,17 +132,6 @@ def grounded_segmentation(image: Union[Image.Image, str], labels: List[str], thr
|
|
132 |
detections = segment(image, detections, polygon_refinement, segmenter_id)
|
133 |
return np.array(image), detections
|
134 |
|
135 |
-
def extract_insect_masks(image: np.ndarray, detections: List[DetectionResult]) -> List[np.ndarray]:
|
136 |
-
return [detection.mask for detection in detections if detection.mask is not None]
|
137 |
-
|
138 |
-
def put_masks_on_yellow_background(image_shape: Tuple[int, int], masks: List[np.ndarray]) -> np.ndarray:
|
139 |
-
yellow_background = np.full((image_shape[0], image_shape[1], 3), (0, 255, 255), dtype=np.uint8)
|
140 |
-
for mask in masks:
|
141 |
-
mask_rgb = cv2.cvtColor(mask, cv2.COLOR_GRAY2RGB)
|
142 |
-
for c in range(3):
|
143 |
-
yellow_background[:,:,c] = cv2.bitwise_or(yellow_background[:,:,c], mask_rgb[:,:,c])
|
144 |
-
return yellow_background
|
145 |
-
|
146 |
def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]:
|
147 |
y, x = np.where(mask)
|
148 |
return x.min(), y.min(), x.max(), y.max()
|
@@ -168,33 +157,16 @@ def create_yellow_background_with_insects(image: np.ndarray, detections: List[De
|
|
168 |
extract_and_paste_insect(image, detection, yellow_background)
|
169 |
return yellow_background
|
170 |
|
171 |
-
def draw_classification_boxes(image_with_insects: np.ndarray, detections: List[DetectionResult]) -> np.ndarray:
|
172 |
-
for detection in detections:
|
173 |
-
label = detection.label
|
174 |
-
score = detection.score
|
175 |
-
box = detection.box
|
176 |
-
color = np.random.randint(0, 256, size=3).tolist()
|
177 |
-
cv2.rectangle(image_with_insects, (box.xmin, box.ymin), (box.xmax, box.ymax), color, 2)
|
178 |
-
(text_width, text_height), baseline = cv2.getTextSize(f"{label}: {score:.2f}", cv2.FONT_HERSHEY_SIMPLEX, 0.5, 2)
|
179 |
-
cv2.rectangle(image_with_insects, (box.xmin, box.ymin - text_height - baseline), (box.xmin + text_width, box.ymin),
|
180 |
-
color, thickness=cv2.FILLED)
|
181 |
-
cv2.putText(image_with_insects, f"{label}: {score:.2f}", (box.xmin, box.ymin - baseline),
|
182 |
-
cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0), 2)
|
183 |
-
return image_with_insects
|
184 |
-
|
185 |
def process_image(image):
|
186 |
labels = ["insect"]
|
187 |
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
yellow_background_with_insects = create_yellow_background_with_insects(original_image, detections)
|
192 |
-
yellow_background_with_boxes = draw_classification_boxes(yellow_background_with_insects, detections)
|
193 |
-
return masked_image, yellow_background_with_masks, yellow_background_with_boxes
|
194 |
|
195 |
gr.Interface(
|
196 |
fn=process_image,
|
197 |
inputs=gr.Image(type="pil"),
|
198 |
-
outputs=[gr.Image(type="numpy"), gr.Image(type="numpy")
|
199 |
-
title="
|
200 |
).launch()
|
|
|
1 |
import os
|
2 |
+
os.system('pip install gradio==4.29.0') # as gradio==4.29.0 doesn't work in requirements.txt
|
3 |
|
4 |
import random
|
5 |
from dataclasses import dataclass
|
|
|
132 |
detections = segment(image, detections, polygon_refinement, segmenter_id)
|
133 |
return np.array(image), detections
|
134 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
135 |
def mask_to_min_max(mask: np.ndarray) -> Tuple[int, int, int, int]:
|
136 |
y, x = np.where(mask)
|
137 |
return x.min(), y.min(), x.max(), y.max()
|
|
|
157 |
extract_and_paste_insect(image, detection, yellow_background)
|
158 |
return yellow_background
|
159 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
160 |
def process_image(image):
|
161 |
labels = ["insect"]
|
162 |
original_image, detections = grounded_segmentation(image, labels, threshold=0.3, polygon_refinement=True)
|
163 |
+
annotated_image = plot_detections(original_image, detections)
|
164 |
+
yellow_background_with_insects = create_yellow_background_with_insects(np.array(original_image), detections)
|
165 |
+
return annotated_image, yellow_background_with_insects
|
|
|
|
|
|
|
166 |
|
167 |
gr.Interface(
|
168 |
fn=process_image,
|
169 |
inputs=gr.Image(type="pil"),
|
170 |
+
outputs=[gr.Image(type="numpy"), gr.Image(type="numpy")],
|
171 |
+
title="Insect Detection and Masking"
|
172 |
).launch()
|