martynattakit commited on
Commit
a0046fe
·
verified ·
1 Parent(s): 340a0f4

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +60 -9
app.py CHANGED
@@ -1,15 +1,17 @@
1
  import torch
2
  from transformers import RobertaTokenizer, RobertaModel
 
3
  import numpy as np
4
  from scipy.special import softmax
5
  import gradio as gr
6
  import re
 
7
 
8
  # Define the model class with dimension reduction
9
  class CodeClassifier(torch.nn.Module):
10
  def __init__(self, base_model, num_labels=6):
11
  super(CodeClassifier, self).__init__()
12
- self.base = base_model
13
  self.reduction = torch.nn.Linear(768, 512)
14
  self.classifier = torch.nn.Linear(512, num_labels)
15
 
@@ -18,13 +20,62 @@ class CodeClassifier(torch.nn.Module):
18
  reduced = self.reduction(outputs.pooler_output)
19
  return self.classifier(reduced)
20
 
21
- # Load model and tokenizer from Hugging Face Model Hub
 
 
 
 
 
 
 
22
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
  tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
24
- base_model = RobertaModel.from_pretrained('martynattakit/CodeSentinel-Model') # Match your Model repo
25
- model = CodeClassifier(base_model)
26
- print("Loaded state dict keys:", model.state_dict().keys())
27
- print("Classifier weight shape:", model.classifier.weight.shape)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
28
  model.eval()
29
  model.to(device)
30
 
@@ -58,11 +109,11 @@ def evaluate_code(code):
58
  try:
59
  if len(code) >= 1500000:
60
  return "Code too large"
61
-
62
  cleaned_code = clean_code(code)
63
  inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
64
  print("Input shape:", inputs['input_ids'].shape)
65
-
66
  with torch.no_grad():
67
  outputs = model(**inputs)
68
  print("Raw logits:", outputs.cpu().numpy())
@@ -70,7 +121,7 @@ def evaluate_code(code):
70
  pred = np.argmax(probs, axis=1)[0]
71
  cwe, description = label_map[pred]
72
  return f"{cwe} {description}"
73
-
74
  except Exception as e:
75
  return f"Error during prediction: {str(e)}"
76
 
 
1
  import torch
2
  from transformers import RobertaTokenizer, RobertaModel
3
+ from huggingface_hub import hf_hub_download # <--- NEW IMPORT
4
  import numpy as np
5
  from scipy.special import softmax
6
  import gradio as gr
7
  import re
8
+ import os # <--- NEW IMPORT
9
 
10
  # Define the model class with dimension reduction
11
  class CodeClassifier(torch.nn.Module):
12
  def __init__(self, base_model, num_labels=6):
13
  super(CodeClassifier, self).__init__()
14
+ self.base = base_model # This will be the microsoft/codebert-base model
15
  self.reduction = torch.nn.Linear(768, 512)
16
  self.classifier = torch.nn.Linear(512, num_labels)
17
 
 
20
  reduced = self.reduction(outputs.pooler_output)
21
  return self.classifier(reduced)
22
 
23
+ # --- START OF MODIFIED LOADING LOGIC ---
24
+
25
+ # Hugging Face Model ID where your .pt file is located
26
+ HF_MODEL_REPO_ID = 'martynattakit/CodeSentinel-Model'
27
+ # The exact filename of your .pt file in that repository
28
+ HF_MODEL_FILENAME = 'best_model.pt' # <--- CONFIRM THIS IS THE EXACT FILENAME YOU UPLOADED
29
+
30
+ # Load the base tokenizer (from Hugging Face Hub as before)
31
  device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
32
  tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
33
+
34
+ # Initialize the base CodeBERT model from Hugging Face (standard download)
35
+ base_codebert_model = RobertaModel.from_pretrained('microsoft/codebert-base')
36
+
37
+ # Instantiate your custom CodeClassifier model
38
+ model = CodeClassifier(base_codebert_model, num_labels=6)
39
+
40
+ # Download the .pt file from Hugging Face Hub
41
+ print(f"Attempting to download {HF_MODEL_FILENAME} from {HF_MODEL_REPO_ID}...")
42
+ try:
43
+ # hf_hub_download will download the file and return its local path (which might be in cache)
44
+ downloaded_model_path = hf_hub_download(
45
+ repo_id=HF_MODEL_REPO_ID,
46
+ filename=HF_MODEL_FILENAME,
47
+ # If your model repo is private, you might need to ensure
48
+ # that huggingface-cli login has been run in your environment.
49
+ )
50
+ print(f"Model downloaded to: {downloaded_model_path}")
51
+
52
+ # Load the state dictionary from the downloaded .pt file
53
+ state_dict = torch.load(downloaded_model_path, map_location=device)
54
+
55
+ # Handle 'module.' prefix if the model was saved with DataParallel
56
+ new_state_dict = {}
57
+ for k, v in state_dict.items():
58
+ if k.startswith('module.'):
59
+ new_state_dict[k[7:]] = v # remove 'module.' prefix
60
+ else:
61
+ new_state_dict[k] = v
62
+ model.load_state_dict(new_state_dict)
63
+ print(f"Successfully loaded model state into CodeClassifier.")
64
+
65
+ except Exception as e:
66
+ print(f"Error during model download or loading: {e}")
67
+ print("Please ensure:")
68
+ print(f"1. The repository '{HF_MODEL_REPO_ID}' exists and is public (or you're logged in with `huggingface-cli login`).")
69
+ print(f"2. The file '{HF_MODEL_FILENAME}' exists within that repository on Hugging Face and is spelled exactly correctly.")
70
+ # Exiting here is good for deployment environments like Hugging Face Spaces,
71
+ # as it makes the error clear early on.
72
+ exit()
73
+
74
+ # --- END OF MODIFIED LOADING LOGIC ---
75
+
76
+
77
+ print("Loaded state dict keys (after loading .pt):", model.state_dict().keys())
78
+ print("Classifier weight shape (after loading .pt):", model.classifier.weight.shape)
79
  model.eval()
80
  model.to(device)
81
 
 
109
  try:
110
  if len(code) >= 1500000:
111
  return "Code too large"
112
+
113
  cleaned_code = clean_code(code)
114
  inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
115
  print("Input shape:", inputs['input_ids'].shape)
116
+
117
  with torch.no_grad():
118
  outputs = model(**inputs)
119
  print("Raw logits:", outputs.cpu().numpy())
 
121
  pred = np.argmax(probs, axis=1)[0]
122
  cwe, description = label_map[pred]
123
  return f"{cwe} {description}"
124
+
125
  except Exception as e:
126
  return f"Error during prediction: {str(e)}"
127