MartyNattakit commited on
Commit
fbfb0eb
·
1 Parent(s): 252a2a0

Add CWE classification app, dependencies, and model file

Browse files
Files changed (2) hide show
  1. app.py +100 -0
  2. requirements.txt +0 -0
app.py ADDED
@@ -0,0 +1,100 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from transformers import RobertaTokenizer, RobertaModel
3
+ import numpy as np
4
+ from scipy.special import softmax
5
+ import gradio as gr
6
+ import re
7
+
8
+ # Define the model class with dimension reduction
9
+ class CodeClassifier(torch.nn.Module):
10
+ def __init__(self, base_model, num_labels=6):
11
+ super(CodeClassifier, self).__init__()
12
+ self.base = base_model
13
+ self.reduction = torch.nn.Linear(768, 512) # Randomly initialized
14
+ self.classifier = torch.nn.Linear(512, num_labels) # Match checkpoint
15
+
16
+ def forward(self, input_ids, attention_mask):
17
+ outputs = self.base(input_ids=input_ids, attention_mask=attention_mask)
18
+ reduced = self.reduction(outputs.pooler_output)
19
+ return self.classifier(reduced)
20
+
21
+ # Load model and tokenizer
22
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
23
+ tokenizer = RobertaTokenizer.from_pretrained('microsoft/codebert-base')
24
+ base_model = RobertaModel.from_pretrained('microsoft/codebert-base')
25
+ model = CodeClassifier(base_model)
26
+ checkpoint = torch.load("C:\\Users\\MartyNattakit\\Downloads\\best_model.pt", map_location=device)
27
+
28
+ # Load the state dict, focusing on classifier weights
29
+ model_state = checkpoint.get('model_state_dict', checkpoint)
30
+ model.load_state_dict(model_state, strict=False)
31
+ print("Loaded state dict keys:", model.state_dict().keys())
32
+ print("Classifier weight shape:", model.classifier.weight.shape)
33
+ model.eval()
34
+ model.to(device)
35
+
36
+ # Label mapping with descriptions
37
+ label_map = {
38
+ 0: ('none', 'No Vulnerability Detected'),
39
+ 1: ('cwe-121', 'Stack-based Buffer Overflow'),
40
+ 2: ('cwe-78', 'OS Command Injection'),
41
+ 3: ('cwe-190', 'Integer Overflow or Wraparound'),
42
+ 4: ('cwe-191', 'Integer Underflow'),
43
+ 5: ('cwe-122', 'Heap-based Buffer Overflow')
44
+ }
45
+
46
+ def load_c_file(file):
47
+ try:
48
+ if file is None:
49
+ return ""
50
+ with open(file.name, 'r', encoding='utf-8') as f:
51
+ content = f.read()
52
+ return content
53
+ except Exception as e:
54
+ return f"Error reading file: {str(e)}"
55
+
56
+ def clean_code(code):
57
+ code = re.sub(r'/\*.*?\*/', '', code, flags=re.DOTALL)
58
+ code = re.sub(r'//.*$', '', code, flags=re.MULTILINE)
59
+ code = ' '.join(code.split())
60
+ return code
61
+
62
+ def evaluate_code(code):
63
+ try:
64
+ if len(code) >= 1500000:
65
+ return "Code too large"
66
+
67
+ cleaned_code = clean_code(code)
68
+ inputs = tokenizer(cleaned_code, return_tensors="pt", truncation=True, padding=True, max_length=256).to(device)
69
+ print("Input shape:", inputs['input_ids'].shape)
70
+
71
+ with torch.no_grad():
72
+ outputs = model(**inputs)
73
+ print("Raw logits:", outputs.cpu().numpy())
74
+ probs = softmax(outputs.cpu().numpy(), axis=1)
75
+ pred = np.argmax(probs, axis=1)[0]
76
+ cwe, description = label_map[pred]
77
+ return f"{cwe} {description}"
78
+
79
+ except Exception as e:
80
+ return f"Error during prediction: {str(e)}"
81
+
82
+ with gr.Blocks() as web:
83
+ with gr.Row():
84
+ with gr.Column(scale=1):
85
+ code_box = gr.Textbox(lines=20, label="** C/C++ Code", placeholder="Paste your C or C++ code here...")
86
+ with gr.Column(scale=1):
87
+ cc_file = gr.File(label="Upload C/C++ File (.c or .cpp)", file_types=[".c", ".cpp"])
88
+ check_btn = gr.Button("Check")
89
+
90
+ with gr.Row():
91
+ gr.Markdown("### Result:")
92
+
93
+ with gr.Row():
94
+ with gr.Column(scale=1):
95
+ label_box = gr.Textbox(label="Vulnerability", interactive=False)
96
+
97
+ cc_file.change(fn=load_c_file, inputs=cc_file, outputs=code_box)
98
+ check_btn.click(fn=evaluate_code, inputs=code_box, outputs=[label_box])
99
+
100
+ web.launch()
requirements.txt ADDED
File without changes