File size: 8,184 Bytes
79e3005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
818fbfe
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a479704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79e3005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
import gradio as gr

def process_input(user_input):
    """Process user input through the model and return the result."""
    messages = [{"role": "user", "content": user_input}]
    
    # Apply chat template and generate response
    input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
    outputs = model.generate(input_tensor, max_new_tokens=300, pad_token_id=tokenizer.eos_token_id)
    result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
    
    return result

from peft import PeftModel

output_weights_path = "/kaggle/working/fine_tuned_deepseek_math_weights.pth"
torch.save(model.state_dict(), output_weights_path)

import gradio as gr

def process_input(user_input):
    """Process user input through the model and return the result."""
    messages = [{"role": "user", "content": user_input}]
    
    # Apply chat template and generate response
    input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
    outputs = model.generate(input_tensor, max_new_tokens=300, pad_token_id=tokenizer.eos_token_id)
    result = tokenizer.decode(outputs[0][input_tensor.shape[1]:], skip_special_tokens=True)
    
    return result

# Create Gradio interface
demo = gr.Interface(
    fn=process_input,
    inputs=gr.Textbox(placeholder="Enter your equation (e.g. πŸ₯­ Γ· (πŸ‹ - 🍊) = 2, πŸ‹ = 7, 🍊 = 3)"),
    outputs=gr.Textbox(label="Model Output"),
    title="Emoji Math Solver",
    description="Enter a math equation with emojis, and the model will solve it."
)

demo.launch(share=True)

import os
from getpass import getpass
from huggingface_hub import HfApi, Repository
import re

# Get your Hugging Face token
hf_token = getpass("Enter your Hugging Face token: ")
api = HfApi(token=hf_token)

# Get your Space name (username/space-name)
space_name = input("Enter your Hugging Face Space name (username/space-name): ")

# Extract the Gradio code from your notebook
# This assumes your Gradio app is defined in a cell or cells in your notebook
from IPython import get_ipython

# Get all cells from the notebook
cells = get_ipython().user_ns.get('In', [])

# Extract cells that contain Gradio code
gradio_code = []
in_gradio_block = False
for cell in cells:
    # Look for cells that import gradio or define the interface
    if 'import gradio' in cell or 'gr.Interface' in cell or in_gradio_block:
        in_gradio_block = True
        gradio_code.append(cell)
    # If we find a cell that seems to end the Gradio app definition
    elif in_gradio_block and ('if __name__' in cell or 'demo.launch()' in cell):
        gradio_code.append(cell)
        in_gradio_block = False

# Combine the code and ensure it has a launch method
combined_code = "\n\n".join(gradio_code)

# Make sure the app launches when run
if 'if __name__ == "__main__"' not in combined_code:
    combined_code += '\n\nif __name__ == "__main__":\n    demo.launch()'

# Save to app.py
with open("app.py", "w") as f:
    f.write(combined_code)

print("Extracted Gradio code and saved to app.py")

# Clone the existing Space repository
repo = Repository(
    local_dir="space_repo",
    clone_from=f"https://huggingface.co/spaces/{space_name}",
    token=hf_token,
    git_user="marwashahid",
    git_email="[email protected]"
)

# Copy app.py to the repository
import shutil
shutil.copy("app.py", "space_repo/app.py")

# Add requirements if needed
requirements = """
gradio>=3.50.2
"""
with open("space_repo/requirements.txt", "w") as f:
    f.write(requirements)

# Commit and push changes
repo.git_add()
repo.git_commit("Update from Kaggle notebook")
repo.git_push()

print(f"Successfully deployed to https://huggingface.co/spaces/{space_name}")

from peft import PeftModel
import os
from getpass import getpass
from huggingface_hub import HfApi, Repository
import re

# Get your Hugging Face token
hf_token = getpass("Enter your Hugging Face token: ")
api = HfApi(token=hf_token)

# Get your Space name (username/space-name)
space_name = input("Enter your Hugging Face Space name (username/space-name): ")

# Extract the Gradio code from your notebook
# This assumes your Gradio app is defined in a cell or cells in your notebook
from IPython import get_ipython

# Get all cells from the notebook
cells = get_ipython().user_ns.get('In', [])

# Extract cells that contain Gradio code
gradio_code = []
in_gradio_block = False
for cell in cells:
    # Look for cells that import gradio or define the interface
    if 'import gradio' in cell or 'gr.Interface' in cell or in_gradio_block:
        in_gradio_block = True
        gradio_code.append(cell)
    # If we find a cell that seems to end the Gradio app definition
    elif in_gradio_block and ('if __name__' in cell or 'demo.launch()' in cell):
        gradio_code.append(cell)
        in_gradio_block = False

# Combine the code and ensure it has a launch method
combined_code = "\n\n".join(gradio_code)

# Make sure the app launches when run
if 'if __name__ == "__main__"' not in combined_code:
    combined_code += '\n\nif __name__ == "__main__":\n    demo.launch()'

# Save to app.py
with open("app.py", "w") as f:
    f.write(combined_code)

print("Extracted Gradio code and saved to app.py")

# Clone the existing Space repository
repo = Repository(
    local_dir="space_repo",
    clone_from=f"https://huggingface.co/spaces/{space_name}",
    token=hf_token,
    git_user="marwashahid",
    git_email="[email protected]"
)

# Copy app.py to the repository
import shutil
shutil.copy("app.py", "space_repo/app.py")

# Add requirements if needed
requirements = """
gradio>=3.50.2
"""
with open("space_repo/requirements.txt", "w") as f:
    f.write(requirements)

# Commit and push changes
repo.git_add()
repo.git_commit("Update from Kaggle notebook")
repo.git_push()

print(f"Successfully deployed to https://huggingface.co/spaces/{space_name}")

get_ipython().run_line_magic('pip', 'install peft')

from peft import PeftModel
import os
from getpass import getpass
from huggingface_hub import HfApi, Repository
import re

# Get your Hugging Face token
hf_token = getpass("Enter your Hugging Face token: ")
api = HfApi(token=hf_token)

# Get your Space name (username/space-name)
space_name = input("Enter your Hugging Face Space name (username/space-name): ")

# Extract the Gradio code from your notebook
# This assumes your Gradio app is defined in a cell or cells in your notebook
from IPython import get_ipython

# Get all cells from the notebook
cells = get_ipython().user_ns.get('In', [])

# Extract cells that contain Gradio code
gradio_code = []
in_gradio_block = False
for cell in cells:
    # Look for cells that import gradio or define the interface
    if 'import gradio' in cell or 'gr.Interface' in cell or in_gradio_block:
        in_gradio_block = True
        gradio_code.append(cell)
    # If we find a cell that seems to end the Gradio app definition
    elif in_gradio_block and ('if __name__' in cell or 'demo.launch()' in cell):
        gradio_code.append(cell)
        in_gradio_block = False

# Combine the code and ensure it has a launch method
combined_code = "\n\n".join(gradio_code)

# Make sure the app launches when run
if 'if __name__ == "__main__"' not in combined_code:
    combined_code += '\n\nif __name__ == "__main__":\n    demo.launch()'

# Save to app.py
with open("app.py", "w") as f:
    f.write(combined_code)

print("Extracted Gradio code and saved to app.py")

# Clone the existing Space repository
repo = Repository(
    local_dir="space_repo",
    clone_from=f"https://huggingface.co/spaces/{space_name}",
    token=hf_token,
    git_user="marwashahid",
    git_email="[email protected]"
)

# Copy app.py to the repository
import shutil
shutil.copy("app.py", "space_repo/app.py")

# Add requirements if needed
requirements = """
gradio>=3.50.2
"""
with open("space_repo/requirements.txt", "w") as f:
    f.write(requirements)

# Commit and push changes
repo.git_add()
repo.git_commit("Update from Kaggle notebook")
repo.git_push()

print(f"Successfully deployed to https://huggingface.co/spaces/{space_name}")