Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,298 +1,350 @@
|
|
1 |
import streamlit as st
|
2 |
import os
|
|
|
3 |
from dotenv import load_dotenv
|
4 |
-
|
5 |
-
|
6 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
8 |
-
from langchain.
|
|
|
9 |
from langchain_groq import ChatGroq
|
10 |
-
import
|
11 |
-
import
|
|
|
|
|
12 |
|
13 |
# --- Configuration ---
|
14 |
DOCS_DIR = "docs"
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
CACHE_DIR_FAISS = "faiss_index_cache" # Directory to cache FAISS index
|
19 |
|
20 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
-
|
23 |
-
"""Loads GROQ API key from .env file or environment variables."""
|
24 |
-
load_dotenv()
|
25 |
-
groq_api_key = os.getenv("GROQ_API_KEY")
|
26 |
-
if not groq_api_key:
|
27 |
-
st.error("GROQ_API_KEY not found. Please set it in your environment variables or a .env file.")
|
28 |
-
st.stop()
|
29 |
-
return groq_api_key
|
30 |
|
31 |
-
@st.cache_resource(show_spinner="Loading and
|
32 |
-
def load_and_process_documents(
|
33 |
"""
|
34 |
-
Loads documents from the specified
|
35 |
-
|
36 |
-
Caches the FAISS index to disk for faster subsequent loads.
|
37 |
"""
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
41 |
|
42 |
-
|
|
|
|
|
|
|
43 |
|
44 |
-
|
45 |
-
# We'll use glob to find all files and pass them to UnstructuredFileLoader
|
46 |
-
all_files = []
|
47 |
-
supported_extensions = ["*.pdf", "*.docx", "*.doc", "*.xlsx", "*.xls", "*.json", "*.txt", "*.md", "*.html", "*.csv", "*.pptx"] # Add more if needed
|
48 |
-
for ext in supported_extensions:
|
49 |
-
all_files.extend(glob.glob(os.path.join(_docs_dir, ext)))
|
50 |
-
|
51 |
-
if not all_files:
|
52 |
-
st.warning(f"No supported documents found in '{_docs_dir}'. Supported types: {', '.join(supported_extensions)}")
|
53 |
-
return None
|
54 |
-
|
55 |
-
st.write(f"Found {len(all_files)} files to process: {', '.join([os.path.basename(f) for f in all_files])}")
|
56 |
-
|
57 |
-
docs = []
|
58 |
-
progress_bar = st.progress(0, text="Loading documents...")
|
59 |
-
for i, file_path in enumerate(all_files):
|
60 |
try:
|
61 |
-
st.write(f"Processing: {os.path.basename(file_path)}")
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
loaded_docs = loader.load()
|
70 |
-
docs.extend(loaded_docs)
|
71 |
except Exception as e:
|
72 |
-
st.error(f"Error loading
|
73 |
-
|
74 |
-
|
75 |
-
if not
|
76 |
-
st.
|
77 |
-
return
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
return None
|
88 |
-
|
89 |
-
st.write(f"Split documents into {len(texts)} chunks.")
|
90 |
-
progress_bar.progress(0, text="Generating embeddings and creating vector store... (This may take a while)")
|
91 |
-
|
92 |
-
# Initialize embeddings
|
93 |
try:
|
94 |
-
embeddings = HuggingFaceEmbeddings(model_name=
|
95 |
-
|
96 |
-
st.
|
97 |
-
st.error("Please ensure you have an internet connection and the model name is correct.")
|
98 |
-
st.stop()
|
99 |
-
|
100 |
-
|
101 |
-
# Create FAISS vector store and cache it
|
102 |
-
if os.path.exists(CACHE_DIR_FAISS) and os.listdir(CACHE_DIR_FAISS):
|
103 |
-
try:
|
104 |
-
st.write(f"Loading cached FAISS index from {CACHE_DIR_FAISS}...")
|
105 |
-
vector_store = FAISS.load_local(CACHE_DIR_FAISS, embeddings, allow_dangerous_deserialization=True) # Required for FAISS with HuggingFaceEmbeddings
|
106 |
-
st.write("FAISS index loaded from cache.")
|
107 |
-
progress_bar.progress(1.0, text="Vector store ready.")
|
108 |
-
return vector_store
|
109 |
-
except Exception as e:
|
110 |
-
st.warning(f"Could not load FAISS index from cache: {e}. Rebuilding index.")
|
111 |
-
|
112 |
-
try:
|
113 |
-
vector_store = FAISS.from_documents(texts, embeddings)
|
114 |
-
if not os.path.exists(CACHE_DIR_FAISS):
|
115 |
-
os.makedirs(CACHE_DIR_FAISS)
|
116 |
-
vector_store.save_local(CACHE_DIR_FAISS)
|
117 |
-
st.write(f"FAISS index created and saved to {CACHE_DIR_FAISS}.")
|
118 |
-
progress_bar.progress(1.0, text="Vector store ready.")
|
119 |
return vector_store
|
120 |
except Exception as e:
|
121 |
-
st.error(f"Error creating
|
122 |
return None
|
123 |
|
124 |
-
|
125 |
@st.cache_resource(show_spinner="Initializing LLM...")
|
126 |
-
def get_llm(
|
127 |
-
"""Initializes
|
|
|
|
|
|
|
128 |
try:
|
129 |
-
llm = ChatGroq(
|
130 |
-
groq_api_key=_api_key,
|
131 |
-
model_name="mixtral-8x7b-32768", # Or "llama3-70b-8192", "llama3-8b-8192", "gemma-7b-it"
|
132 |
-
temperature=0.2, # Adjust for creativity vs. factuality
|
133 |
-
# max_tokens=1024, # Optional: set max tokens
|
134 |
-
)
|
135 |
return llm
|
136 |
except Exception as e:
|
137 |
-
st.error(f"Error initializing
|
138 |
-
|
139 |
|
140 |
-
# ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
141 |
|
142 |
-
|
|
|
|
|
|
|
143 |
|
144 |
-
# ---
|
145 |
-
st.
|
|
|
|
|
|
|
146 |
<style>
|
147 |
-
|
148 |
-
|
|
|
|
|
149 |
}
|
150 |
-
|
151 |
-
|
|
|
|
|
|
|
|
|
|
|
152 |
border-radius: 10px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
}
|
|
|
154 |
.stButton > button {
|
155 |
-
|
156 |
-
background-color: #1E88E5; /* Blue */
|
157 |
color: white;
|
158 |
-
|
|
|
|
|
|
|
159 |
transition: background-color 0.3s ease;
|
160 |
}
|
161 |
.stButton > button:hover {
|
162 |
-
background-color: #1565C0; /* Darker
|
163 |
-
}
|
164 |
-
.stSpinner > div > svg { /* Spinner color */
|
165 |
-
fill: #1E88E5;
|
166 |
}
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
}
|
171 |
-
|
172 |
-
|
173 |
-
color:
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
border-radius: 10px;
|
180 |
-
box-shadow: 0 4px 8px rgba(0,0,0,0.1);
|
181 |
-
margin-top: 20px;
|
182 |
-
}
|
183 |
-
.response-header {
|
184 |
-
font-size: 1.5em;
|
185 |
-
color: #1E88E5;
|
186 |
-
margin-bottom: 10px;
|
187 |
}
|
188 |
</style>
|
189 |
-
""", unsafe_allow_html=True)
|
190 |
|
|
|
|
|
|
|
|
|
|
|
|
|
191 |
|
192 |
-
|
193 |
-
|
194 |
-
st.
|
195 |
|
196 |
-
#
|
197 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
|
204 |
-
|
205 |
-
if not os.path.exists(DOCS_DIR):
|
206 |
-
os.makedirs(DOCS_DIR)
|
207 |
-
st.sidebar.info(f"'{DOCS_DIR}' directory created. Please add your documents there and refresh.")
|
208 |
|
209 |
-
|
210 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
211 |
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
st.
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
st.write("No specific source documents were identified for this query.")
|
271 |
-
|
272 |
-
except Exception as e:
|
273 |
-
st.error(f"An error occurred while processing your query: {e}")
|
274 |
-
|
275 |
-
# --- Suggestions for Improvement (as per prompt request) ---
|
276 |
-
st.sidebar.markdown("---")
|
277 |
-
st.sidebar.subheader("💡 Suggestions & Notes:")
|
278 |
-
st.sidebar.markdown("""
|
279 |
-
- **Table Data:** `UnstructuredFileLoader` attempts to parse tables. For PDFs with very complex tables, if accuracy is insufficient, consider:
|
280 |
-
- Pre-processing PDFs with tools like `Camelot` or `Tabula-py` to extract tables into CSV/Markdown, then load those.
|
281 |
-
- Exploring `unstructured` with `strategy="hi_res"` (may require `detectron2` and `brew install poppler` or similar for your OS). This is more computationally intensive.
|
282 |
-
- Fine-tuning embedding models or using models specialized for tabular data if table queries are critical.
|
283 |
-
- **Accuracy:** "100% accuracy" is an ideal. RAG systems are powerful but can make mistakes. Improve by:
|
284 |
-
- Better chunking strategies.
|
285 |
-
- More advanced retrieval (e.g., HyDE, re-ranking).
|
286 |
-
- Prompt engineering for the QA chain.
|
287 |
-
- Using more powerful (and potentially slower/costlier) LLMs if available via GROQ.
|
288 |
-
- Regularly evaluating and curating the document set.
|
289 |
-
- **Performance:** The current FAISS caching helps significantly. For very large datasets, explore more scalable vector DBs.
|
290 |
-
- **UI/UX:** Added some basic styling. For more "catchy" UI, explore Streamlit Components or more elaborate CSS.
|
291 |
-
- **Error Handling:** Added basic error checks. Robust applications need more comprehensive error management.
|
292 |
-
- **Scalability:** For many concurrent users on Hugging Face, resource limits (CPU, RAM) for the free tier might be a bottleneck, especially during embedding.
|
293 |
-
- **Embedding Model:** `all-MiniLM-L6-v2` is efficient. For higher accuracy with more complex content, consider models like `sentence-transformers/all-mpnet-base-v2` or domain-specific embeddings.
|
294 |
-
- **Deployment:** Ensure `GROQ_API_KEY` is set as a secret in Hugging Face Spaces.
|
295 |
-
""")
|
296 |
-
|
297 |
-
st.markdown("---")
|
298 |
-
st.markdown("<p style='text-align: center; color: grey;'>Powered by Streamlit, Langchain & GROQ</p>", unsafe_allow_html=True)
|
|
|
1 |
import streamlit as st
|
2 |
import os
|
3 |
+
import glob
|
4 |
from dotenv import load_dotenv
|
5 |
+
import time
|
6 |
+
|
7 |
+
from langchain_community.document_loaders import (
|
8 |
+
PyPDFLoader,
|
9 |
+
Docx2txtLoader,
|
10 |
+
UnstructuredExcelLoader,
|
11 |
+
JSONLoader,
|
12 |
+
UnstructuredFileLoader # Generic loader, good for tables
|
13 |
+
)
|
14 |
from langchain_text_splitters import RecursiveCharacterTextSplitter
|
15 |
+
from langchain.embeddings import HuggingFaceEmbeddings
|
16 |
+
from langchain_community.vectorstores import FAISS
|
17 |
from langchain_groq import ChatGroq
|
18 |
+
from langchain.chains import RetrievalQA
|
19 |
+
from langchain.prompts import PromptTemplate
|
20 |
+
from langchain.schema.runnable import RunnablePassthrough
|
21 |
+
from langchain.schema.output_parser import StrOutputParser
|
22 |
|
23 |
# --- Configuration ---
|
24 |
DOCS_DIR = "docs"
|
25 |
+
# Using a local sentence transformer model for embeddings
|
26 |
+
EMBEDDING_MODEL_NAME = "sentence-transformers/all-MiniLM-L6-v2"
|
27 |
+
CACHE_DIR = ".streamlit_cache" # For potential disk-based caching if needed beyond Streamlit's default
|
|
|
28 |
|
29 |
+
# Create docs and cache directory if they don't exist
|
30 |
+
if not os.path.exists(DOCS_DIR):
|
31 |
+
os.makedirs(DOCS_DIR)
|
32 |
+
if not os.path.exists(CACHE_DIR):
|
33 |
+
os.makedirs(CACHE_DIR)
|
34 |
+
|
35 |
+
# --- Helper Function for Document Loading ---
|
36 |
+
def get_loader(file_path):
|
37 |
+
"""Detects file type and returns appropriate Langchain loader."""
|
38 |
+
_, ext = os.path.splitext(file_path)
|
39 |
+
ext = ext.lower()
|
40 |
+
# Prioritize UnstructuredFileLoader for robust table and content extraction
|
41 |
+
# UnstructuredFileLoader can handle many types, but we can specify if needed
|
42 |
+
if ext in ['.pdf', '.docx', '.doc', '.xlsx', '.xls', '.json', '.txt', '.md', '.html', '.xml', '.eml', '.msg']:
|
43 |
+
return UnstructuredFileLoader(file_path, mode="elements", strategy="fast") # "elements" is good for tables
|
44 |
+
# Fallback or specific loaders if UnstructuredFileLoader has issues with a particular file
|
45 |
+
# elif ext == ".pdf":
|
46 |
+
# return PyPDFLoader(file_path) # Basic PDF loader
|
47 |
+
# elif ext in [".docx", ".doc"]:
|
48 |
+
# return Docx2txtLoader(file_path) # Basic DOCX loader
|
49 |
+
# elif ext in [".xlsx", ".xls"]:
|
50 |
+
# return UnstructuredExcelLoader(file_path, mode="elements") # Unstructured for Excel
|
51 |
+
# elif ext == ".json":
|
52 |
+
# return JSONLoader(file_path, jq_schema='.[]', text_content=False) # Adjust jq_schema as needed
|
53 |
+
else:
|
54 |
+
st.warning(f"Unsupported file type: {ext}. Skipping {os.path.basename(file_path)}")
|
55 |
+
return None
|
56 |
|
57 |
+
# --- Caching Functions ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
@st.cache_resource(show_spinner="Loading and Processing Documents...")
|
60 |
+
def load_and_process_documents(docs_path: str):
|
61 |
"""
|
62 |
+
Loads documents from the specified path, processes them, and splits into chunks.
|
63 |
+
Uses UnstructuredFileLoader for potentially better table extraction.
|
|
|
64 |
"""
|
65 |
+
documents = []
|
66 |
+
doc_files = []
|
67 |
+
for ext in ["*.pdf", "*.docx", "*.xlsx", "*.json", "*.txt", "*.md"]:
|
68 |
+
doc_files.extend(glob.glob(os.path.join(docs_path, ext)))
|
69 |
|
70 |
+
if not doc_files:
|
71 |
+
st.error(f"No documents found in the '{docs_path}' directory. Please add some documents.")
|
72 |
+
st.info("Supported formats: .pdf, .docx, .xlsx, .json, .txt, .md")
|
73 |
+
return []
|
74 |
|
75 |
+
for file_path in doc_files:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
try:
|
77 |
+
st.write(f"Processing: {os.path.basename(file_path)}...") # Show progress
|
78 |
+
loader = get_loader(file_path)
|
79 |
+
if loader:
|
80 |
+
loaded_docs = loader.load()
|
81 |
+
# Add source metadata to each document for better traceability
|
82 |
+
for doc in loaded_docs:
|
83 |
+
doc.metadata["source"] = os.path.basename(file_path)
|
84 |
+
documents.extend(loaded_docs)
|
|
|
|
|
85 |
except Exception as e:
|
86 |
+
st.error(f"Error loading {os.path.basename(file_path)}: {e}")
|
87 |
+
st.warning(f"Skipping file {os.path.basename(file_path)} due to error.")
|
88 |
+
|
89 |
+
if not documents:
|
90 |
+
st.error("No documents were successfully loaded or processed.")
|
91 |
+
return []
|
92 |
+
|
93 |
+
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
|
94 |
+
chunked_documents = text_splitter.split_documents(documents)
|
95 |
+
|
96 |
+
if not chunked_documents:
|
97 |
+
st.error("Document processing resulted in no text chunks. Check document content and parsing.")
|
98 |
+
return []
|
99 |
+
|
100 |
+
st.success(f"Successfully loaded and processed {len(doc_files)} documents into {len(chunked_documents)} chunks.")
|
101 |
+
return chunked_documents
|
102 |
+
|
103 |
+
@st.cache_resource(show_spinner="Creating Vector Store (Embeddings)...")
|
104 |
+
def create_vector_store(_documents, _embedding_model_name: str):
|
105 |
+
"""Creates a FAISS vector store from the given documents and embedding model."""
|
106 |
+
if not _documents:
|
107 |
+
st.warning("Cannot create vector store: No documents processed.")
|
108 |
return None
|
|
|
|
|
|
|
|
|
|
|
109 |
try:
|
110 |
+
embeddings = HuggingFaceEmbeddings(model_name=_embedding_model_name)
|
111 |
+
vector_store = FAISS.from_documents(_documents, embedding=embeddings)
|
112 |
+
st.success("Vector Store created successfully!")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
return vector_store
|
114 |
except Exception as e:
|
115 |
+
st.error(f"Error creating vector store: {e}")
|
116 |
return None
|
117 |
|
|
|
118 |
@st.cache_resource(show_spinner="Initializing LLM...")
|
119 |
+
def get_llm(api_key: str, model_name: str = "mixtral-8x7b-32768"): # "llama3-70b-8192" is another option
|
120 |
+
"""Initializes the Groq LLM."""
|
121 |
+
if not api_key:
|
122 |
+
st.error("GROQ_API_KEY not found! Please set it in your environment variables or a .env file.")
|
123 |
+
return None
|
124 |
try:
|
125 |
+
llm = ChatGroq(temperature=0, groq_api_key=api_key, model_name=model_name)
|
|
|
|
|
|
|
|
|
|
|
126 |
return llm
|
127 |
except Exception as e:
|
128 |
+
st.error(f"Error initializing Groq LLM: {e}")
|
129 |
+
return None
|
130 |
|
131 |
+
# --- RAG Chain Setup ---
|
132 |
+
def get_rag_chain(llm, retriever, prompt_template_str):
|
133 |
+
"""Creates a RAG chain with the given LLM, retriever, and prompt template."""
|
134 |
+
prompt = PromptTemplate(
|
135 |
+
template=prompt_template_str,
|
136 |
+
input_variables=["context", "question"]
|
137 |
+
)
|
138 |
+
|
139 |
+
rag_chain = (
|
140 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
141 |
+
| prompt
|
142 |
+
| llm
|
143 |
+
| StrOutputParser()
|
144 |
+
)
|
145 |
+
return rag_chain
|
146 |
|
147 |
+
# --- Main Application Logic ---
|
148 |
+
def main():
|
149 |
+
load_dotenv()
|
150 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
151 |
|
152 |
+
# --- UI Setup ---
|
153 |
+
st.set_page_config(page_title="Internal Knowledge Base AI", layout="wide", initial_sidebar_state="expanded")
|
154 |
+
|
155 |
+
# Custom CSS for a "catchy and elegant" design
|
156 |
+
st.markdown("""
|
157 |
<style>
|
158 |
+
/* General body style */
|
159 |
+
body {
|
160 |
+
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
161 |
+
background-color: #f0f2f6; /* Light gray background */
|
162 |
}
|
163 |
+
/* Main content area */
|
164 |
+
.main .block-container {
|
165 |
+
padding-top: 2rem;
|
166 |
+
padding-bottom: 2rem;
|
167 |
+
padding-left: 3rem;
|
168 |
+
padding-right: 3rem;
|
169 |
+
background-color: #ffffff; /* White content background */
|
170 |
border-radius: 10px;
|
171 |
+
box-shadow: 0 4px 12px rgba(0,0,0,0.1); /* Subtle shadow */
|
172 |
+
}
|
173 |
+
/* Title style */
|
174 |
+
h1 {
|
175 |
+
color: #1E88E5; /* Catchy blue */
|
176 |
+
text-align: center;
|
177 |
+
font-weight: 600;
|
178 |
+
}
|
179 |
+
/* Sidebar style */
|
180 |
+
.stSidebar {
|
181 |
+
background-color: #E3F2FD; /* Light blue sidebar */
|
182 |
+
padding: 10px;
|
183 |
+
}
|
184 |
+
.stSidebar .sidebar-content {
|
185 |
+
background-color: #E3F2FD;
|
186 |
+
}
|
187 |
+
/* Input box style */
|
188 |
+
.stTextInput > div > div > input {
|
189 |
+
background-color: #f8f9fa;
|
190 |
+
border-radius: 5px;
|
191 |
+
border: 1px solid #ced4da;
|
192 |
}
|
193 |
+
/* Button style */
|
194 |
.stButton > button {
|
195 |
+
background-color: #1E88E5; /* Catchy blue */
|
|
|
196 |
color: white;
|
197 |
+
border-radius: 5px;
|
198 |
+
padding: 0.5rem 1rem;
|
199 |
+
font-weight: 500;
|
200 |
+
border: none;
|
201 |
transition: background-color 0.3s ease;
|
202 |
}
|
203 |
.stButton > button:hover {
|
204 |
+
background-color: #1565C0; /* Darker blue on hover */
|
|
|
|
|
|
|
205 |
}
|
206 |
+
/* Status messages */
|
207 |
+
.stAlert { /* For st.info, st.success, st.warning, st.error */
|
208 |
+
border-radius: 5px;
|
209 |
}
|
210 |
+
/* Response area */
|
211 |
+
.response-area {
|
212 |
+
background-color: #f8f9fa;
|
213 |
+
padding: 1rem;
|
214 |
+
border-radius: 5px;
|
215 |
+
border: 1px solid #e0e0e0;
|
216 |
+
margin-top: 1rem;
|
217 |
+
min-height: 100px;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
218 |
}
|
219 |
</style>
|
220 |
+
""", unsafe_allow_html=True)
|
221 |
|
222 |
+
st.title("📚 Internal Knowledge Base AI 💡")
|
223 |
+
|
224 |
+
# Sidebar for status and information
|
225 |
+
st.sidebar.header("System Status")
|
226 |
+
status_placeholder = st.sidebar.empty()
|
227 |
+
status_placeholder.info("Initializing...")
|
228 |
|
229 |
+
if not groq_api_key:
|
230 |
+
status_placeholder.error("GROQ API Key not configured. Application cannot start.")
|
231 |
+
st.stop()
|
232 |
|
233 |
+
# --- Knowledge Base Loading ---
|
234 |
+
# This will be cached after the first run
|
235 |
+
with st.spinner("Knowledge Base is loading... Please wait."):
|
236 |
+
start_time = time.time()
|
237 |
+
processed_documents = load_and_process_documents(DOCS_DIR)
|
238 |
+
if not processed_documents:
|
239 |
+
status_placeholder.error("Failed to load or process documents. Check logs and `docs` folder.")
|
240 |
+
st.stop()
|
241 |
+
|
242 |
+
vector_store = create_vector_store(processed_documents, EMBEDDING_MODEL_NAME)
|
243 |
+
if not vector_store:
|
244 |
+
status_placeholder.error("Failed to create vector store. Application cannot proceed.")
|
245 |
+
st.stop()
|
246 |
+
|
247 |
+
llm = get_llm(groq_api_key)
|
248 |
+
if not llm:
|
249 |
+
status_placeholder.error("Failed to initialize LLM. Application cannot proceed.")
|
250 |
+
st.stop()
|
251 |
+
|
252 |
+
end_time = time.time()
|
253 |
+
status_placeholder.success(f"Application Ready! (Loaded in {end_time - start_time:.2f}s)")
|
254 |
+
|
255 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 5}) # Retrieve top 5 relevant chunks
|
256 |
+
|
257 |
+
# --- Query Input and Response ---
|
258 |
+
st.markdown("---")
|
259 |
+
st.subheader("Ask a question about our documents:")
|
260 |
+
|
261 |
+
# Prompt templates
|
262 |
+
GENERAL_QA_PROMPT = """
|
263 |
+
You are an AI assistant for our internal knowledge base.
|
264 |
+
Your goal is to provide accurate and concise answers based ONLY on the provided context.
|
265 |
+
Do not make up information. If the answer is not found in the context, state that clearly.
|
266 |
+
Ensure your answers are directly supported by the text.
|
267 |
+
Accuracy is paramount.
|
268 |
+
|
269 |
+
Context:
|
270 |
+
{context}
|
271 |
+
|
272 |
+
Question: {question}
|
273 |
+
|
274 |
+
Answer:
|
275 |
+
"""
|
276 |
|
277 |
+
ORDER_STATUS_PROMPT = """
|
278 |
+
You are an AI assistant helping with customer order inquiries.
|
279 |
+
Based ONLY on the following retrieved information from our order system and policies:
|
280 |
+
{context}
|
281 |
|
282 |
+
The customer's query is: {question}
|
|
|
|
|
|
|
283 |
|
284 |
+
Please perform the following steps:
|
285 |
+
1. Carefully analyze the context for any order details (Order ID, Customer Name, Status, Items, Dates, etc.).
|
286 |
+
2. If an order matching the query (or related to a name in the query) is found in the context:
|
287 |
+
- Address the customer by their name if available in the order details (e.g., "Hello [Customer Name],").
|
288 |
+
- Provide ALL available information about their order, including Order ID, status, items, dates, and any other relevant details found in the context.
|
289 |
+
- Be comprehensive and clear.
|
290 |
+
3. If no specific order details are found in the context that match the query, or if the context is insufficient, politely state that you couldn't find the specific order information in the provided documents and suggest they contact support for further assistance.
|
291 |
+
4. Do NOT invent or infer any information not explicitly present in the context.
|
292 |
|
293 |
+
Answer:
|
294 |
+
"""
|
295 |
+
|
296 |
+
# Use session state to store conversation history if desired, or just last query/response
|
297 |
+
if "messages" not in st.session_state:
|
298 |
+
st.session_state.messages = []
|
299 |
+
|
300 |
+
query = st.text_input("Enter your question:", key="query_input", placeholder="e.g., 'What is the return policy?' or 'Status of order for John Doe?'")
|
301 |
+
|
302 |
+
if st.button("Submit", key="submit_button"):
|
303 |
+
if query:
|
304 |
+
st.session_state.messages.append({"role": "user", "content": query})
|
305 |
+
|
306 |
+
# Determine prompt based on query type (simple keyword check)
|
307 |
+
# A more sophisticated intent detection could be used here (e.g., another LLM call, classifier)
|
308 |
+
if "order" in query.lower() and ("status" in query.lower() or "track" in query.lower() or "update" in query.lower() or any(name_part.lower() in query.lower() for name_part in ["customer", "client", "name"])): # Basic check for order status
|
309 |
+
active_prompt_template = ORDER_STATUS_PROMPT
|
310 |
+
st.sidebar.info("Using: Order Status Query Mode")
|
311 |
+
else:
|
312 |
+
active_prompt_template = GENERAL_QA_PROMPT
|
313 |
+
st.sidebar.info("Using: General Query Mode")
|
314 |
+
|
315 |
+
rag_chain = get_rag_chain(llm, retriever, active_prompt_template)
|
316 |
+
|
317 |
+
with st.spinner("Thinking..."):
|
318 |
+
try:
|
319 |
+
response = rag_chain.invoke(query)
|
320 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
321 |
+
except Exception as e:
|
322 |
+
st.error(f"Error during RAG chain invocation: {e}")
|
323 |
+
response = "Sorry, I encountered an error while processing your request."
|
324 |
+
st.session_state.messages.append({"role": "assistant", "content": response})
|
325 |
+
else:
|
326 |
+
st.warning("Please enter a question.")
|
327 |
+
|
328 |
+
# Display chat messages
|
329 |
+
st.markdown("---")
|
330 |
+
st.subheader("Response:")
|
331 |
+
response_area = st.container()
|
332 |
+
response_area.add_rows([ # Create a container with fixed height and scroll
|
333 |
+
st.markdown(f"<div class='response-area'>{st.session_state.messages[-1]['content'] if st.session_state.messages and st.session_state.messages[-1]['role'] == 'assistant' else 'Ask a question to see the answer here.'}</div>", unsafe_allow_html=True)
|
334 |
+
])
|
335 |
+
|
336 |
+
|
337 |
+
# Optional: Display retrieved context for debugging or transparency
|
338 |
+
# if st.sidebar.checkbox("Show Retrieved Context (for debugging)"):
|
339 |
+
# if query and vector_store: # Check if query and vector_store exist
|
340 |
+
# docs = retriever.get_relevant_documents(query)
|
341 |
+
# st.sidebar.subheader("Retrieved Context:")
|
342 |
+
# for i, doc in enumerate(docs):
|
343 |
+
# st.sidebar.text_area(f"Chunk {i+1} (Source: {doc.metadata.get('source', 'N/A')})", doc.page_content, height=150)
|
344 |
+
|
345 |
+
st.sidebar.markdown("---")
|
346 |
+
st.sidebar.markdown("Built with ❤️ using Streamlit & Langchain & Groq")
|
347 |
+
|
348 |
+
|
349 |
+
if __name__ == "__main__":
|
350 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|