masadonline commited on
Commit
d85b86d
Β·
verified Β·
1 Parent(s): df6942b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +148 -125
app.py CHANGED
@@ -13,103 +13,108 @@ import requests
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
- from twilio.base.exceptions import TwilioRestException
17
  import pdfplumber
18
  import datetime
19
  import csv
20
- import json
21
- import re
22
 
23
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
24
- print(f"APP_START_TIME: {APP_START_TIME}")
25
  os.environ["PYTORCH_JIT"] = "0"
26
 
27
- # ---------------- PDF & DOCX & JSON Extraction ----------------
28
  def _extract_tables_from_page(page):
 
 
29
  tables = page.extract_tables()
 
 
 
30
  formatted_tables = []
31
  for table in tables:
32
  formatted_table = []
33
  for row in table:
34
- formatted_row = [cell if cell is not None else "" for cell in row]
35
- formatted_table.append(formatted_row)
 
 
 
36
  formatted_tables.append(formatted_table)
37
  return formatted_tables
38
-
39
  def extract_text_from_pdf(pdf_path):
40
  text_output = StringIO()
41
  all_tables = []
42
  try:
43
  with pdfplumber.open(pdf_path) as pdf:
44
  for page in pdf.pages:
45
- all_tables.extend(_extract_tables_from_page(page))
 
 
 
 
46
  text = page.extract_text()
47
  if text:
48
  text_output.write(text + "\n\n")
49
  except Exception as e:
50
- print(f"pdfplumber error: {e}")
 
51
  with open(pdf_path, 'rb') as file:
52
- extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
53
- return text_output.getvalue(), all_tables
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  def _format_tables_internal(tables):
 
 
56
  formatted_tables_str = []
57
  for table in tables:
 
58
  with StringIO() as csvfile:
59
- writer = csv.writer(csvfile)
60
- writer.writerows(table)
61
  formatted_tables_str.append(csvfile.getvalue())
62
  return "\n\n".join(formatted_tables_str)
63
 
64
- def clean_extracted_text(text):
65
- return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
66
-
67
  def extract_text_from_docx(docx_path):
68
  try:
69
  doc = docx.Document(docx_path)
70
  return '\n'.join(para.text for para in doc.paragraphs)
71
- except:
72
  return ""
73
 
74
- def load_json_data(json_path):
75
- try:
76
- with open(json_path, 'r', encoding='utf-8') as f:
77
- data = json.load(f)
78
- if isinstance(data, dict):
79
- # Flatten dictionary values (avoiding nested structures as strings)
80
- return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
81
- elif isinstance(data, list):
82
- # Flatten list of dictionaries
83
- all_items = []
84
- for item in data:
85
- if isinstance(item, dict):
86
- all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
87
- return "\n\n".join(all_items)
88
- else:
89
- return json.dumps(data, ensure_ascii=False, indent=2)
90
- except Exception as e:
91
- print(f"JSON read error: {e}")
92
- return ""
93
-
94
- # ---------------- Chunking ----------------
95
- def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
96
  tokens = tokenizer.tokenize(text)
97
  chunks = []
98
  start = 0
99
  while start < len(tokens):
100
  end = min(start + chunk_size, len(tokens))
101
- chunk = tokens[start:end]
102
- chunks.append(tokenizer.convert_tokens_to_string(chunk))
103
- if end == len(tokens): break
 
 
104
  start += chunk_size - chunk_overlap
105
  return chunks
106
 
107
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
108
- q_embedding = embed_model.encode(question)
109
- D, I = index.search(np.array([q_embedding]), k)
110
  return [text_chunks[i] for i in I[0]]
111
 
112
- # ---------------- Groq Answer Generator ----------------
113
  def generate_answer_with_groq(question, context):
114
  url = "https://api.groq.com/openai/v1/chat/completions"
115
  api_key = os.environ.get("GROQ_API_KEY")
@@ -119,9 +124,8 @@ def generate_answer_with_groq(question, context):
119
  }
120
  prompt = (
121
  f"Customer asked: '{question}'\n\n"
122
- f"Here is the relevant information to help:\n{context}\n\n"
123
- f"Respond in a friendly and helpful tone as a toy shop support agent, "
124
- f"addressing the customer by their name if it's available in the context."
125
  )
126
  payload = {
127
  "model": "llama3-8b-8192",
@@ -129,11 +133,9 @@ def generate_answer_with_groq(question, context):
129
  {
130
  "role": "system",
131
  "content": (
132
- "You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
133
- "Help customers with toys, delivery, and returns in a helpful tone. "
134
- "When responding, try to find the customer's name in the provided context "
135
- "and address them directly. If the context contains order details and status, "
136
- "include that information in your response."
137
  )
138
  },
139
  {"role": "user", "content": prompt},
@@ -145,10 +147,9 @@ def generate_answer_with_groq(question, context):
145
  response.raise_for_status()
146
  return response.json()['choices'][0]['message']['content'].strip()
147
 
148
- # ---------------- Twilio Integration ----------------
149
  def fetch_latest_incoming_message(client, conversation_sid):
150
  try:
151
- print(f"fetch_latest_incoming_message Twilio SID : {conversation_sid}")
152
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
153
  for msg in reversed(messages):
154
  if msg.author.startswith("whatsapp:"):
@@ -159,114 +160,136 @@ def fetch_latest_incoming_message(client, conversation_sid):
159
  "timestamp": msg.date_created,
160
  }
161
  except TwilioRestException as e:
162
- print(f"❌ Twilio error for SID {conversation_sid}: {e}")
163
- return None
 
 
 
 
 
164
 
 
165
 
166
  def send_twilio_message(client, conversation_sid, body):
167
  return client.conversations.v1.conversations(conversation_sid).messages.create(
168
  author="system", body=body
169
  )
170
 
171
- # ---------------- Knowledge Base Setup ----------------
172
  def setup_knowledge_base():
173
  folder_path = "docs"
174
  all_text = ""
175
 
176
- for filename in os.listdir(folder_path):
177
- file_path = os.path.join(folder_path, filename)
178
- if filename.endswith(".pdf"):
179
- text, tables = extract_text_from_pdf(file_path)
180
- all_text += clean_extracted_text(text) + "\n"
181
- all_text += _format_tables_internal(tables) + "\n"
182
- elif filename.endswith(".docx"):
183
- text = extract_text_from_docx(file_path)
184
- all_text += clean_extracted_text(text) + "\n"
185
- elif filename.endswith(".json"):
186
- text = load_json_data(file_path)
187
- all_text += text + "\n"
188
- elif filename.endswith(".csv"):
189
- try:
190
- with open(file_path, newline='', encoding='utf-8') as csvfile:
191
- reader = csv.DictReader(csvfile)
192
- for row in reader:
193
- line = ' | '.join(f"{k}: {v}" for k, v in row.items())
194
- all_text += line + "\n"
195
- except Exception as e:
196
- print(f"CSV read error: {e}")
 
 
 
 
 
 
 
 
197
 
 
198
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
199
  chunks = chunk_text(all_text, tokenizer)
200
  model = SentenceTransformer('all-mpnet-base-v2')
201
- embeddings = model.encode(chunks, show_progress_bar=False)
202
  dim = embeddings[0].shape[0]
203
  index = faiss.IndexFlatL2(dim)
204
  index.add(np.array(embeddings).astype('float32'))
205
  return index, model, chunks
206
 
207
- # ---------------- Monitor Twilio Conversations ----------------
 
 
208
  def start_conversation_monitor(client, index, embed_model, text_chunks):
209
  processed_convos = set()
210
  last_processed_timestamp = {}
211
 
212
- def poll_convo(convo_sid):
213
- print(f"🧡 Started polling for SID: {convo_sid}")
214
  while True:
215
  try:
216
  latest_msg = fetch_latest_incoming_message(client, convo_sid)
217
  if latest_msg:
218
  msg_time = latest_msg["timestamp"]
219
- prev_time = last_processed_timestamp.get(convo_sid)
220
-
221
- if prev_time is None or msg_time > prev_time:
222
  last_processed_timestamp[convo_sid] = msg_time
223
  question = latest_msg["body"]
224
  sender = latest_msg["author"]
225
- print(f"πŸ“© New message from {sender}: {question}")
226
  context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
227
  answer = generate_answer_with_groq(question, context)
228
  send_twilio_message(client, convo_sid, answer)
 
 
229
  except Exception as e:
230
- print(f"⚠️ Error in poll_convo: {e}")
231
- time.sleep(120)
232
-
233
- # Get all conversations and find the most recent one after APP_START_TIME
234
- conversations = client.conversations.v1.conversations.list(limit=20)
235
- print("Conversations (date_created) sorted in descending order:")
236
- for c in sorted_convos:
237
- print(f"Date: {c.date_created}, ID: {c.sid}")
238
- sorted_convos = sorted(
239
- [c for c in conversations if c.date_created > APP_START_TIME],
240
- key=lambda c: c.date_created,
241
- reverse=True
242
- )
243
 
244
- if not sorted_convos:
245
- print("❗ No new Twilio conversations found after app startup.")
246
- return
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
247
 
248
- latest_convo = sorted_convos[0]
249
- if latest_convo.sid not in processed_convos:
250
- processed_convos.add(latest_convo.sid)
251
- print(f"βœ… Monitoring latest conversation SID: {latest_convo.sid}, Created: {latest_convo.date_created}")
252
- threading.Thread(target=poll_convo, args=(latest_convo.sid,), daemon=True).start()
253
 
254
 
255
- # ---------------- Main Entry ----------------
256
- if __name__ == "__main__":
257
- st.title("πŸ€– ToyBot WhatsApp Assistant")
258
- st.write("Initializing knowledge base...")
259
 
260
- index, model, chunks = setup_knowledge_base()
 
 
261
 
262
- st.success("Knowledge base loaded.")
263
- st.write("Waiting for WhatsApp messages...")
264
-
265
- account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
266
- auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
267
- if not account_sid or not auth_token:
268
- st.error("❌ Twilio credentials not set.")
269
- else:
270
- client = Client(account_sid, auth_token)
271
- start_conversation_monitor(client, index, model, chunks)
272
- st.info("βœ… Bot is now monitoring the latest Twilio conversation.")
 
 
 
 
 
 
 
 
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
+ from twilio.base.exceptions import TwilioRestException # Add this at the top
17
  import pdfplumber
18
  import datetime
19
  import csv
 
 
20
 
21
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
22
+
23
  os.environ["PYTORCH_JIT"] = "0"
24
 
25
+ # --- PDF Extraction ---
26
  def _extract_tables_from_page(page):
27
+ """Extracts tables from a single page of a PDF."""
28
+
29
  tables = page.extract_tables()
30
+ if not tables:
31
+ return []
32
+
33
  formatted_tables = []
34
  for table in tables:
35
  formatted_table = []
36
  for row in table:
37
+ if row: # Filter out empty rows
38
+ formatted_row = [cell if cell is not None else "" for cell in row] # Replace None with ""
39
+ formatted_table.append(formatted_row)
40
+ else:
41
+ formatted_table.append([""]) # Append an empty row if the row is None
42
  formatted_tables.append(formatted_table)
43
  return formatted_tables
44
+
45
  def extract_text_from_pdf(pdf_path):
46
  text_output = StringIO()
47
  all_tables = []
48
  try:
49
  with pdfplumber.open(pdf_path) as pdf:
50
  for page in pdf.pages:
51
+ # Extract tables
52
+ page_tables = _extract_tables_from_page(page)
53
+ if page_tables:
54
+ all_tables.extend(page_tables)
55
+ # Extract text
56
  text = page.extract_text()
57
  if text:
58
  text_output.write(text + "\n\n")
59
  except Exception as e:
60
+ print(f"Error extracting with pdfplumber: {e}")
61
+ # Fallback to pdfminer if pdfplumber fails
62
  with open(pdf_path, 'rb') as file:
63
+ extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
64
+ extracted_text = text_output.getvalue()
65
+ return extracted_text, all_tables # Return text and list of tables
66
+
67
+ def clean_extracted_text(text):
68
+ lines = text.splitlines()
69
+ cleaned = []
70
+ for line in lines:
71
+ line = line.strip()
72
+ if line:
73
+ line = ' '.join(line.split())
74
+ cleaned.append(line)
75
+ return '\n'.join(cleaned)
76
 
77
  def _format_tables_internal(tables):
78
+ """Formats extracted tables into a string representation."""
79
+
80
  formatted_tables_str = []
81
  for table in tables:
82
+ # Use csv writer to handle commas and quotes correctly
83
  with StringIO() as csvfile:
84
+ csvwriter = csv.writer(csvfile)
85
+ csvwriter.writerows(table)
86
  formatted_tables_str.append(csvfile.getvalue())
87
  return "\n\n".join(formatted_tables_str)
88
 
89
+ # --- DOCX Extraction ---
 
 
90
  def extract_text_from_docx(docx_path):
91
  try:
92
  doc = docx.Document(docx_path)
93
  return '\n'.join(para.text for para in doc.paragraphs)
94
+ except Exception:
95
  return ""
96
 
97
+ # --- Chunking ---
98
+ def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  tokens = tokenizer.tokenize(text)
100
  chunks = []
101
  start = 0
102
  while start < len(tokens):
103
  end = min(start + chunk_size, len(tokens))
104
+ chunk_tokens = tokens[start:end]
105
+ chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
106
+ chunks.append(chunk_text)
107
+ if end == len(tokens):
108
+ break
109
  start += chunk_size - chunk_overlap
110
  return chunks
111
 
112
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
113
+ question_embedding = embed_model.encode(question)
114
+ D, I = index.search(np.array([question_embedding]), k)
115
  return [text_chunks[i] for i in I[0]]
116
 
117
+ # --- Groq Answer Generator ---
118
  def generate_answer_with_groq(question, context):
119
  url = "https://api.groq.com/openai/v1/chat/completions"
120
  api_key = os.environ.get("GROQ_API_KEY")
 
124
  }
125
  prompt = (
126
  f"Customer asked: '{question}'\n\n"
127
+ f"Here is the relevant product or policy info to help:\n{context}\n\n"
128
+ f"Respond in a friendly and helpful tone as a toy shop support agent."
 
129
  )
130
  payload = {
131
  "model": "llama3-8b-8192",
 
133
  {
134
  "role": "system",
135
  "content": (
136
+ "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
137
+ "Your goal is to politely answer customer questions, help them choose the right toys, "
138
+ "provide order or delivery information, explain return policies, and guide them through purchases."
 
 
139
  )
140
  },
141
  {"role": "user", "content": prompt},
 
147
  response.raise_for_status()
148
  return response.json()['choices'][0]['message']['content'].strip()
149
 
150
+ # --- Twilio Functions ---
151
  def fetch_latest_incoming_message(client, conversation_sid):
152
  try:
 
153
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
154
  for msg in reversed(messages):
155
  if msg.author.startswith("whatsapp:"):
 
160
  "timestamp": msg.date_created,
161
  }
162
  except TwilioRestException as e:
163
+ if e.status == 404:
164
+ print(f"Conversation {conversation_sid} not found, skipping...")
165
+ else:
166
+ print(f"Twilio error fetching messages for {conversation_sid}:", e)
167
+ except Exception as e:
168
+ #print(f"Unexpected error in fetch_latest_incoming_message for {conversation_sid}:", e)
169
+ pass
170
 
171
+ return None
172
 
173
  def send_twilio_message(client, conversation_sid, body):
174
  return client.conversations.v1.conversations(conversation_sid).messages.create(
175
  author="system", body=body
176
  )
177
 
178
+ # --- Load Knowledge Base ---
179
  def setup_knowledge_base():
180
  folder_path = "docs"
181
  all_text = ""
182
 
183
+ # Process PDFs
184
+ for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
185
+ pdf_path = os.path.join(folder_path, filename)
186
+ text, tables = extract_text_from_pdf(pdf_path)
187
+ all_text += clean_extracted_text(text) + "\n"
188
+ all_text += _format_tables_internal(tables) + "\n"
189
+
190
+ # Process CSVs
191
+ for filename in ["CustomerOrders.csv"]:
192
+ csv_path = os.path.join(folder_path, filename)
193
+ try:
194
+ with open(csv_path, newline='', encoding='utf-8') as csvfile:
195
+ reader = csv.DictReader(csvfile)
196
+ for row in reader:
197
+ line = f"Order ID: {row.get('OrderID')} | Customer Name: {row.get('CustomerName')} | Order Date: {row.get('OrderDate')} | ProductID: {row.get('ProductID')} | Date: {row.get('OrderDate')} | Quantity: {row.get('Quantity')} | UnitPrice(USD): {row.get('UnitPrice(USD)')} | TotalPrice(USD): {row.get('TotalPrice(USD)')} | ShippingAddress: {row.get('ShippingAddress')} | OrderStatus: {row.get('OrderStatus')}"
198
+ all_text += line + "\n"
199
+ except Exception as e:
200
+ print(f"❌ Error reading {filename}: {e}")
201
+
202
+ for filename in ["Products.csv"]:
203
+ csv_path = os.path.join(folder_path, filename)
204
+ try:
205
+ with open(csv_path, newline='', encoding='utf-8') as csvfile:
206
+ reader = csv.DictReader(csvfile)
207
+ for row in reader:
208
+ line = f"Product ID: {row.get('ProductID')} | Toy Name: {row.get('ToyName')} | Category: {row.get('Category')} | Price(USD): {row.get('Price(USD)')} | Stock Quantity: {row.get('StockQuantity')} | Description: {row.get('Description')}"
209
+ all_text += line + "\n"
210
+ except Exception as e:
211
+ print(f"❌ Error reading {filename}: {e}")
212
 
213
+ # Tokenization & chunking
214
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
215
  chunks = chunk_text(all_text, tokenizer)
216
  model = SentenceTransformer('all-mpnet-base-v2')
217
+ embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
218
  dim = embeddings[0].shape[0]
219
  index = faiss.IndexFlatL2(dim)
220
  index.add(np.array(embeddings).astype('float32'))
221
  return index, model, chunks
222
 
223
+
224
+
225
+ # --- Monitor Conversations ---
226
  def start_conversation_monitor(client, index, embed_model, text_chunks):
227
  processed_convos = set()
228
  last_processed_timestamp = {}
229
 
230
+ def poll_conversation(convo_sid):
 
231
  while True:
232
  try:
233
  latest_msg = fetch_latest_incoming_message(client, convo_sid)
234
  if latest_msg:
235
  msg_time = latest_msg["timestamp"]
236
+ if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
 
 
237
  last_processed_timestamp[convo_sid] = msg_time
238
  question = latest_msg["body"]
239
  sender = latest_msg["author"]
240
+ print(f"\nπŸ“₯ New message from {sender} in {convo_sid}: {question}")
241
  context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
242
  answer = generate_answer_with_groq(question, context)
243
  send_twilio_message(client, convo_sid, answer)
244
+ print(f"πŸ“€ Replied to {sender}: {answer}")
245
+ time.sleep(3)
246
  except Exception as e:
247
+ print(f"❌ Error in convo {convo_sid} polling:", e)
248
+ time.sleep(5)
 
 
 
 
 
 
 
 
 
 
 
249
 
250
+ def poll_new_conversations():
251
+ print("➑️ Monitoring for new WhatsApp conversations...")
252
+ while True:
253
+ try:
254
+ conversations = client.conversations.v1.conversations.list(limit=20)
255
+ for convo in conversations:
256
+ convo_full = client.conversations.v1.conversations(convo.sid).fetch()
257
+ if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
258
+ participants = client.conversations.v1.conversations(convo.sid).participants.list()
259
+ for p in participants:
260
+ address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
261
+ if address.startswith("whatsapp:"):
262
+ print(f"πŸ†• New WhatsApp convo found: {convo.sid}")
263
+ processed_convos.add(convo.sid)
264
+ threading.Thread(target=poll_conversation, args=(convo.sid,), daemon=True).start()
265
+ except Exception as e:
266
+ print("❌ Error polling conversations:", e)
267
+ time.sleep(5)
268
 
269
+ # βœ… Launch conversation polling monitor
270
+ threading.Thread(target=poll_new_conversations, daemon=True).start()
 
 
 
271
 
272
 
 
 
 
 
273
 
274
+ # --- Streamlit UI ---
275
+ st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
276
+ st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")
277
 
278
+ account_sid = st.secrets.get("TWILIO_SID")
279
+ auth_token = st.secrets.get("TWILIO_TOKEN")
280
+ GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
281
+
282
+ if not all([account_sid, auth_token, GROQ_API_KEY]):
283
+ st.warning("⚠️ Provide all credentials below:")
284
+ account_sid = st.text_input("Twilio SID", value=account_sid or "")
285
+ auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
286
+ GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
287
+
288
+ if all([account_sid, auth_token, GROQ_API_KEY]):
289
+ os.environ["GROQ_API_KEY"] = GROQ_API_KEY
290
+ client = Client(account_sid, auth_token)
291
+
292
+ st.success("🟒 Monitoring new WhatsApp conversations...")
293
+ index, model, chunks = setup_knowledge_base()
294
+ threading.Thread(target=start_conversation_monitor, args=(client, index, model, chunks), daemon=True).start()
295
+ st.info("⏳ Waiting for new messages...")