Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -116,33 +116,25 @@ def create_vector_store(_documents, _embedding_model_name: str):
|
|
116 |
return None
|
117 |
|
118 |
@st.cache_resource(show_spinner="Initializing LLM...")
|
119 |
-
def get_llm(api_key: str, model_name: str = "
|
120 |
"""Initializes the Groq LLM."""
|
121 |
if not api_key:
|
122 |
st.error("GROQ_API_KEY not found! Please set it in your environment variables or a .env file.")
|
123 |
return None
|
124 |
try:
|
|
|
|
|
|
|
|
|
125 |
llm = ChatGroq(temperature=0, groq_api_key=api_key, model_name=model_name)
|
|
|
126 |
return llm
|
127 |
except Exception as e:
|
128 |
st.error(f"Error initializing Groq LLM: {e}")
|
129 |
return None
|
130 |
|
131 |
# --- RAG Chain Setup ---
|
132 |
-
|
133 |
-
"""Creates a RAG chain with the given LLM, retriever, and prompt template."""
|
134 |
-
prompt = PromptTemplate(
|
135 |
-
template=prompt_template_str,
|
136 |
-
input_variables=["context", "question"]
|
137 |
-
)
|
138 |
-
|
139 |
-
rag_chain = (
|
140 |
-
{"context": retriever, "question": RunnablePassthrough()}
|
141 |
-
| prompt
|
142 |
-
| llm
|
143 |
-
| StrOutputParser()
|
144 |
-
)
|
145 |
-
return rag_chain
|
146 |
|
147 |
# --- Main Application Logic ---
|
148 |
def main():
|
@@ -152,86 +144,35 @@ def main():
|
|
152 |
# --- UI Setup ---
|
153 |
st.set_page_config(page_title="Internal Knowledge Base AI", layout="wide", initial_sidebar_state="expanded")
|
154 |
|
155 |
-
# Custom CSS
|
156 |
st.markdown("""
|
157 |
<style>
|
158 |
-
|
159 |
-
body {
|
160 |
-
font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
|
161 |
-
background-color: #f0f2f6; /* Light gray background */
|
162 |
-
}
|
163 |
-
/* Main content area */
|
164 |
-
.main .block-container {
|
165 |
-
padding-top: 2rem;
|
166 |
-
padding-bottom: 2rem;
|
167 |
-
padding-left: 3rem;
|
168 |
-
padding-right: 3rem;
|
169 |
-
background-color: #ffffff; /* White content background */
|
170 |
-
border-radius: 10px;
|
171 |
-
box-shadow: 0 4px 12px rgba(0,0,0,0.1); /* Subtle shadow */
|
172 |
-
}
|
173 |
-
/* Title style */
|
174 |
-
h1 {
|
175 |
-
color: #1E88E5; /* Catchy blue */
|
176 |
-
text-align: center;
|
177 |
-
font-weight: 600;
|
178 |
-
}
|
179 |
-
/* Sidebar style */
|
180 |
-
.stSidebar {
|
181 |
-
background-color: #E3F2FD; /* Light blue sidebar */
|
182 |
-
padding: 10px;
|
183 |
-
}
|
184 |
-
.stSidebar .sidebar-content {
|
185 |
-
background-color: #E3F2FD;
|
186 |
-
}
|
187 |
-
/* Input box style */
|
188 |
-
.stTextInput > div > div > input {
|
189 |
-
background-color: #f8f9fa;
|
190 |
-
border-radius: 5px;
|
191 |
-
border: 1px solid #ced4da;
|
192 |
-
}
|
193 |
-
/* Button style */
|
194 |
-
.stButton > button {
|
195 |
-
background-color: #1E88E5; /* Catchy blue */
|
196 |
-
color: white;
|
197 |
-
border-radius: 5px;
|
198 |
-
padding: 0.5rem 1rem;
|
199 |
-
font-weight: 500;
|
200 |
-
border: none;
|
201 |
-
transition: background-color 0.3s ease;
|
202 |
-
}
|
203 |
-
.stButton > button:hover {
|
204 |
-
background-color: #1565C0; /* Darker blue on hover */
|
205 |
-
}
|
206 |
-
/* Status messages */
|
207 |
-
.stAlert { /* For st.info, st.success, st.warning, st.error */
|
208 |
-
border-radius: 5px;
|
209 |
-
}
|
210 |
-
/* Response area */
|
211 |
-
.response-area {
|
212 |
-
background-color: #f8f9fa;
|
213 |
-
padding: 1rem;
|
214 |
-
border-radius: 5px;
|
215 |
-
border: 1px solid #e0e0e0;
|
216 |
-
margin-top: 1rem;
|
217 |
-
min-height: 100px;
|
218 |
-
}
|
219 |
</style>
|
220 |
""", unsafe_allow_html=True)
|
221 |
|
222 |
st.title("📚 Internal Knowledge Base AI 💡")
|
223 |
|
224 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
225 |
st.sidebar.header("System Status")
|
226 |
status_placeholder = st.sidebar.empty()
|
227 |
status_placeholder.info("Initializing...")
|
228 |
|
|
|
229 |
if not groq_api_key:
|
230 |
status_placeholder.error("GROQ API Key not configured. Application cannot start.")
|
231 |
st.stop()
|
232 |
|
233 |
# --- Knowledge Base Loading ---
|
234 |
-
# This will be cached after the first run
|
235 |
with st.spinner("Knowledge Base is loading... Please wait."):
|
236 |
start_time = time.time()
|
237 |
processed_documents = load_and_process_documents(DOCS_DIR)
|
@@ -244,17 +185,22 @@ def main():
|
|
244 |
status_placeholder.error("Failed to create vector store. Application cannot proceed.")
|
245 |
st.stop()
|
246 |
|
247 |
-
|
|
|
248 |
if not llm:
|
|
|
249 |
status_placeholder.error("Failed to initialize LLM. Application cannot proceed.")
|
250 |
st.stop()
|
251 |
|
252 |
end_time = time.time()
|
|
|
253 |
status_placeholder.success(f"Application Ready! (Loaded in {end_time - start_time:.2f}s)")
|
254 |
|
255 |
-
retriever = vector_store.as_retriever(search_kwargs={"k": 5})
|
256 |
|
257 |
# --- Query Input and Response ---
|
|
|
|
|
258 |
st.markdown("---")
|
259 |
st.subheader("Ask a question about our documents:")
|
260 |
|
@@ -293,7 +239,6 @@ def main():
|
|
293 |
Answer:
|
294 |
"""
|
295 |
|
296 |
-
# Use session state to store conversation history if desired, or just last query/response
|
297 |
if "messages" not in st.session_state:
|
298 |
st.session_state.messages = []
|
299 |
|
@@ -303,14 +248,14 @@ def main():
|
|
303 |
if query:
|
304 |
st.session_state.messages.append({"role": "user", "content": query})
|
305 |
|
306 |
-
|
307 |
-
|
308 |
-
if "order" in query.lower() and ("status" in query.lower() or "track" in query.lower() or "update" in query.lower() or any(name_part.lower() in query.lower() for name_part in ["customer", "client", "name"])):
|
309 |
active_prompt_template = ORDER_STATUS_PROMPT
|
310 |
-
|
311 |
else:
|
312 |
active_prompt_template = GENERAL_QA_PROMPT
|
313 |
-
|
314 |
|
315 |
rag_chain = get_rag_chain(llm, retriever, active_prompt_template)
|
316 |
|
@@ -325,22 +270,16 @@ def main():
|
|
325 |
else:
|
326 |
st.warning("Please enter a question.")
|
327 |
|
328 |
-
# Display chat messages
|
329 |
st.markdown("---")
|
330 |
st.subheader("Response:")
|
331 |
response_area = st.container()
|
332 |
-
response_area
|
333 |
-
|
334 |
-
]
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
# if query and vector_store: # Check if query and vector_store exist
|
340 |
-
# docs = retriever.get_relevant_documents(query)
|
341 |
-
# st.sidebar.subheader("Retrieved Context:")
|
342 |
-
# for i, doc in enumerate(docs):
|
343 |
-
# st.sidebar.text_area(f"Chunk {i+1} (Source: {doc.metadata.get('source', 'N/A')})", doc.page_content, height=150)
|
344 |
|
345 |
st.sidebar.markdown("---")
|
346 |
st.sidebar.markdown("Built with ❤️ using Streamlit & Langchain & Groq")
|
|
|
116 |
return None
|
117 |
|
118 |
@st.cache_resource(show_spinner="Initializing LLM...")
|
119 |
+
def get_llm(api_key: str, model_name: str = "llama3-8b-8192"): # UPDATED MODEL
|
120 |
"""Initializes the Groq LLM."""
|
121 |
if not api_key:
|
122 |
st.error("GROQ_API_KEY not found! Please set it in your environment variables or a .env file.")
|
123 |
return None
|
124 |
try:
|
125 |
+
# Available models (check Groq documentation for the latest):
|
126 |
+
# "llama3-8b-8192" (good balance of speed and capability)
|
127 |
+
# "llama3-70b-8192" (more powerful, potentially slower)
|
128 |
+
# "gemma-7b-it"
|
129 |
llm = ChatGroq(temperature=0, groq_api_key=api_key, model_name=model_name)
|
130 |
+
st.sidebar.info(f"LLM Initialized: {model_name}") # Add info about which model is used
|
131 |
return llm
|
132 |
except Exception as e:
|
133 |
st.error(f"Error initializing Groq LLM: {e}")
|
134 |
return None
|
135 |
|
136 |
# --- RAG Chain Setup ---
|
137 |
+
# ... (get_rag_chain function remains the same) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
# --- Main Application Logic ---
|
140 |
def main():
|
|
|
144 |
# --- UI Setup ---
|
145 |
st.set_page_config(page_title="Internal Knowledge Base AI", layout="wide", initial_sidebar_state="expanded")
|
146 |
|
147 |
+
# Custom CSS (remains the same)
|
148 |
st.markdown("""
|
149 |
<style>
|
150 |
+
# ... (CSS content remains the same) ...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
151 |
</style>
|
152 |
""", unsafe_allow_html=True)
|
153 |
|
154 |
st.title("📚 Internal Knowledge Base AI 💡")
|
155 |
|
156 |
+
st.sidebar.header("System Settings") # Changed from System Status for clarity
|
157 |
+
|
158 |
+
# Model selection in sidebar (New Feature)
|
159 |
+
available_models = ["llama3-8b-8192", "llama3-70b-8192", "gemma-7b-it"] # Add more as Groq supports them
|
160 |
+
selected_model = st.sidebar.selectbox(
|
161 |
+
"Select LLM Model:",
|
162 |
+
available_models,
|
163 |
+
index=available_models.index("llama3-8b-8192") # Default selection
|
164 |
+
)
|
165 |
+
st.sidebar.markdown("---")
|
166 |
st.sidebar.header("System Status")
|
167 |
status_placeholder = st.sidebar.empty()
|
168 |
status_placeholder.info("Initializing...")
|
169 |
|
170 |
+
|
171 |
if not groq_api_key:
|
172 |
status_placeholder.error("GROQ API Key not configured. Application cannot start.")
|
173 |
st.stop()
|
174 |
|
175 |
# --- Knowledge Base Loading ---
|
|
|
176 |
with st.spinner("Knowledge Base is loading... Please wait."):
|
177 |
start_time = time.time()
|
178 |
processed_documents = load_and_process_documents(DOCS_DIR)
|
|
|
185 |
status_placeholder.error("Failed to create vector store. Application cannot proceed.")
|
186 |
st.stop()
|
187 |
|
188 |
+
# Pass the selected model to get_llm
|
189 |
+
llm = get_llm(groq_api_key, model_name=selected_model)
|
190 |
if not llm:
|
191 |
+
# Error is already shown by get_llm, but update status_placeholder too
|
192 |
status_placeholder.error("Failed to initialize LLM. Application cannot proceed.")
|
193 |
st.stop()
|
194 |
|
195 |
end_time = time.time()
|
196 |
+
# status_placeholder is updated by get_llm or on success below
|
197 |
status_placeholder.success(f"Application Ready! (Loaded in {end_time - start_time:.2f}s)")
|
198 |
|
199 |
+
retriever = vector_store.as_retriever(search_kwargs={"k": 5})
|
200 |
|
201 |
# --- Query Input and Response ---
|
202 |
+
# ... (rest of the main function remains the same, including prompt templates, query input, button, and response display logic) ...
|
203 |
+
|
204 |
st.markdown("---")
|
205 |
st.subheader("Ask a question about our documents:")
|
206 |
|
|
|
239 |
Answer:
|
240 |
"""
|
241 |
|
|
|
242 |
if "messages" not in st.session_state:
|
243 |
st.session_state.messages = []
|
244 |
|
|
|
248 |
if query:
|
249 |
st.session_state.messages.append({"role": "user", "content": query})
|
250 |
|
251 |
+
current_model_info = st.sidebar.empty() # Placeholder for current mode info
|
252 |
+
|
253 |
+
if "order" in query.lower() and ("status" in query.lower() or "track" in query.lower() or "update" in query.lower() or any(name_part.lower() in query.lower() for name_part in ["customer", "client", "name"])):
|
254 |
active_prompt_template = ORDER_STATUS_PROMPT
|
255 |
+
current_model_info.info("Mode: Order Status Query")
|
256 |
else:
|
257 |
active_prompt_template = GENERAL_QA_PROMPT
|
258 |
+
current_model_info.info("Mode: General Query")
|
259 |
|
260 |
rag_chain = get_rag_chain(llm, retriever, active_prompt_template)
|
261 |
|
|
|
270 |
else:
|
271 |
st.warning("Please enter a question.")
|
272 |
|
|
|
273 |
st.markdown("---")
|
274 |
st.subheader("Response:")
|
275 |
response_area = st.container()
|
276 |
+
# Ensure response_area is robust against empty messages or incorrect last role
|
277 |
+
last_assistant_message = "Ask a question to see the answer here."
|
278 |
+
if st.session_state.messages and st.session_state.messages[-1]['role'] == 'assistant':
|
279 |
+
last_assistant_message = st.session_state.messages[-1]['content']
|
280 |
+
|
281 |
+
response_area.markdown(f"<div class='response-area'>{last_assistant_message}</div>", unsafe_allow_html=True)
|
282 |
+
|
|
|
|
|
|
|
|
|
|
|
283 |
|
284 |
st.sidebar.markdown("---")
|
285 |
st.sidebar.markdown("Built with ❤️ using Streamlit & Langchain & Groq")
|