masadonline commited on
Commit
f4e7b4f
·
verified ·
1 Parent(s): b5d8c4f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +99 -0
app.py CHANGED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ from PyPDF2 import PdfReader
3
+ from langchain.text_splitter import RecursiveCharacterTextSplitter
4
+ from langchain.embeddings import HuggingFaceEmbeddings
5
+ from langchain.vectorstores import FAISS
6
+ from langchain.llms import HuggingFaceHub
7
+ from langchain.chains import RetrievalQAWithSourcesChain
8
+ import pandas as pd
9
+ import os
10
+ import io
11
+
12
+ # --- 1. Data Loading and Preprocessing ---
13
+
14
+ @st.cache_data()
15
+ def load_and_process_pdfs_from_folder(docs_folder="docs"):
16
+ """Loads and processes all PDF files from the specified folder."""
17
+ all_text = ""
18
+ all_tables = []
19
+ for filename in os.listdir(docs_folder):
20
+ if filename.endswith(".pdf"):
21
+ filepath = os.path.join(docs_folder, filename)
22
+ try:
23
+ with open(filepath, 'rb') as file:
24
+ pdf_reader = PdfReader(file)
25
+ for page in pdf_reader.pages:
26
+ all_text += page.extract_text() + "\n"
27
+ try:
28
+ for table in page.extract_tables():
29
+ df = pd.DataFrame(table)
30
+ all_tables.append(df)
31
+ except Exception as e:
32
+ print(f"Could not extract tables from page in {filename}. Error: {e}")
33
+ except Exception as e:
34
+ st.error(f"Error reading PDF {filename}: {e}")
35
+ return all_text, all_tables
36
+
37
+ @st.cache_data()
38
+ def split_text_into_chunks(text):
39
+ """Splits the text into smaller, manageable chunks."""
40
+ text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
41
+ chunks = text_splitter.split_text(text)
42
+ return chunks
43
+
44
+ @st.cache_data()
45
+ def create_vectorstore(chunks):
46
+ """Creates a vectorstore from the text chunks using HuggingFace embeddings."""
47
+ embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
48
+ vectorstore = FAISS.from_texts(chunks, embeddings)
49
+ return vectorstore
50
+
51
+ # --- 2. Question Answering with RAG ---
52
+
53
+ @st.cache_resource()
54
+ def setup_llm():
55
+ """Sets up the Hugging Face Hub LLM."""
56
+ llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512})
57
+ return llm
58
+
59
+ def perform_rag(vectorstore, llm, query):
60
+ """Performs retrieval-augmented generation."""
61
+ qa_chain = RetrievalQAWithSourcesChain.from_llm(llm, retriever=vectorstore.as_retriever())
62
+ result = qa_chain({"question": query})
63
+ return result
64
+
65
+ # --- 3. Streamlit UI ---
66
+
67
+ def main():
68
+ st.title("PDF Q&A with Local Docs")
69
+ st.info("Make sure you have a 'docs' folder in the same directory as this script containing your PDF files.")
70
+
71
+ with st.spinner("Loading and processing PDF(s)..."):
72
+ all_text, all_tables = load_and_process_pdfs_from_folder()
73
+
74
+ if all_text:
75
+ with st.spinner("Creating knowledge base..."):
76
+ chunks = split_text_into_chunks(all_text)
77
+ vectorstore = create_vectorstore(chunks)
78
+ llm = setup_llm()
79
+
80
+ query = st.text_input("Ask a question about the documents:")
81
+ if query:
82
+ with st.spinner("Searching for answer..."):
83
+ result = perform_rag(vectorstore, llm, query)
84
+ st.subheader("Answer:")
85
+ st.write(result["answer"])
86
+ if "sources" in result:
87
+ st.subheader("Source:")
88
+ st.write(result["sources"])
89
+
90
+ if all_tables:
91
+ st.subheader("Extracted Tables:")
92
+ for i, table_df in enumerate(all_tables):
93
+ st.write(f"Table {i+1}:")
94
+ st.dataframe(table_df)
95
+ elif not all_text:
96
+ st.warning("No PDF files found in the 'docs' folder.")
97
+
98
+ if __name__ == "__main__":
99
+ main()