Spaces:
Sleeping
Sleeping
File size: 7,074 Bytes
19cd752 60c8a15 19cd752 6bda95c 717234d 60c8a15 e992967 60c8a15 b036db9 19cd752 60c8a15 19cd752 c0270e5 60c8a15 0ee59bd 60c8a15 0ee59bd 60c8a15 19cd752 60c8a15 19cd752 60c8a15 19cd752 60c8a15 7ef0563 60c8a15 7ef0563 60c8a15 7ef0563 60c8a15 19cd752 60c8a15 19cd752 31f1016 b94cf70 19cd752 b94cf70 19cd752 b94cf70 31f1016 19cd752 b94cf70 19cd752 f51c85c e992967 31f1016 19cd752 c0270e5 19cd752 c0270e5 e992967 31f1016 e992967 31f1016 19cd752 31f1016 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 |
# app.py
import os
import time
import threading
import streamlit as st
from twilio.rest import Client
from pdfminer.high_level import extract_text
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import PyPDF2
import requests
# --- Text Extraction Utilities ---
def extract_text_from_pdf(pdf_path):
try:
text = ""
with open(pdf_path, 'rb') as file:
reader = PyPDF2.PdfReader(file)
for page in reader.pages:
page_text = page.extract_text()
if page_text:
text += page_text
return text
except:
return extract_text(pdf_path)
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
return '\n'.join(para.text for para in doc.paragraphs)
except:
return ""
# --- Chunking & Retrieval ---
def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
tokens = tokenizer.tokenize(text)
chunks, start = [], 0
while start < len(tokens):
end = min(start + chunk_size, len(tokens))
chunk_tokens = tokens[start:end]
chunks.append(tokenizer.convert_tokens_to_string(chunk_tokens))
start += chunk_size - chunk_overlap
return chunks
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
q_embedding = embed_model.encode([question])[0]
D, I = index.search(np.array([q_embedding]), k)
return [text_chunks[i] for i in I[0]]
# --- Groq Answer Generator ---
def generate_answer_with_groq(question, context):
url = "https://api.groq.com/openai/v1/chat/completions"
api_key = os.environ.get("GROQ_API_KEY")
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
prompt = (
f"Customer asked: '{question}'\n\n"
f"Here is the relevant product or policy info to help:\n{context}\n\n"
f"Respond in a friendly and helpful tone as a toy shop support agent."
)
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": (
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
"Your goal is to politely answer customer questions, help them choose the right toys, "
"provide order or delivery information, explain return policies, and guide them through purchases. "
)
},
{"role": "user", "content": prompt},
],
"temperature": 0.5,
"max_tokens": 300,
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()['choices'][0]['message']['content'].strip()
# --- Twilio Functions ---
def get_latest_whatsapp_conversation_sid(client):
conversations = client.conversations.v1.conversations.list(limit=20)
for convo in conversations:
try:
participants = client.conversations.v1.conversations(convo.sid).participants.list()
for p in participants:
if (p.identity and p.identity.startswith("whatsapp:")) or (
p.messaging_binding and p.messaging_binding.get("address", "").startswith("whatsapp:")
):
return convo.sid
except:
continue
return conversations[0].sid if conversations else None
def fetch_latest_incoming_message(client, conversation_sid):
messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
for msg in reversed(messages):
if msg.author.startswith("whatsapp:"):
return msg.body, msg.author, msg.index
return None, None, None
def send_twilio_message(client, conversation_sid, body):
return client.conversations.v1.conversations(conversation_sid).messages.create(
author="system", body=body
)
# --- Load Knowledge Base ---
def setup_knowledge_base():
folder_path = "docs"
all_text = ""
for file in os.listdir(folder_path):
path = os.path.join(folder_path, file)
if file.endswith(".pdf"):
all_text += extract_text_from_pdf(path) + "\n"
elif file.endswith((".docx", ".doc")):
all_text += extract_text_from_docx(path) + "\n"
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
chunks = chunk_text(all_text, tokenizer)
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(chunks)
dim = embeddings[0].shape[0]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings).astype('float32'))
return index, model, chunks
# --- Background Polling Thread ---
def start_message_monitor(client, convo_sid, index, embed_model, text_chunks):
last_index = -1
def poll_loop():
nonlocal last_index
while True:
try:
question, sender, msg_index = fetch_latest_incoming_message(client, convo_sid)
if question and msg_index > last_index:
last_index = msg_index
print(f"\nπ₯ New Message from {sender}: {question}")
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
answer = generate_answer_with_groq(question, context)
send_twilio_message(client, convo_sid, answer)
print(f"π€ Sent Reply: {answer}")
time.sleep(3)
except Exception as e:
print("β Error in polling loop:", e)
time.sleep(5)
thread = threading.Thread(target=poll_loop, daemon=True)
thread.start()
# --- Streamlit UI ---
st.set_page_config(page_title="Quasa β A Smart WhatsApp Chatbot", layout="wide")
st.title("π± Quasa β A Smart WhatsApp Chatbot")
account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
if not all([account_sid, auth_token, GROQ_API_KEY]):
st.warning("β οΈ Provide all credentials below:")
account_sid = st.text_input("Twilio SID", value=account_sid or "")
auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
if all([account_sid, auth_token, GROQ_API_KEY]):
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
client = Client(account_sid, auth_token)
conversation_sid = get_latest_whatsapp_conversation_sid(client)
if conversation_sid:
st.success("β
WhatsApp connected. Initializing chatbot...")
index, model, chunks = setup_knowledge_base()
start_message_monitor(client, conversation_sid, index, model, chunks)
st.success("π’ Chatbot is running in background and will reply automatically.")
else:
st.error("β No WhatsApp conversation found.")
|