Spaces:
Sleeping
Sleeping
File size: 7,706 Bytes
60c8a15 6bda95c 717234d 60c8a15 e992967 60c8a15 f51c85c b036db9 f51c85c e992967 60c8a15 f51c85c 60c8a15 0ee59bd 60c8a15 0ee59bd 60c8a15 0ee59bd 60c8a15 f51c85c 60c8a15 7ef0563 60c8a15 7ef0563 60c8a15 7ef0563 60c8a15 7ef0563 60c8a15 7ef0563 60c8a15 e992967 7ef0563 60c8a15 f51c85c 60c8a15 717234d 5a62060 1086067 717234d e992967 717234d 1086067 60c8a15 f51c85c e992967 f51c85c a0b543c f51c85c e992967 f51c85c e992967 f51c85c e992967 f51c85c e992967 f51c85c e992967 f51c85c 717234d f51c85c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
import os
import time
import streamlit as st
from twilio.rest import Client
from pdfminer.high_level import extract_text
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import PyPDF2
import requests
from streamlit_autorefresh import st_autorefresh
# Extract text from PDF with fallback
# --- Document Loaders ---
def extract_text_from_pdf(pdf_path):
try:
text = ""
with open(pdf_path, 'rb') as file:
pdf_reader = PyPDF2.PdfReader(file)
for page_num in range(len(pdf_reader.pages)):
page = pdf_reader.pages[page_num]
page_text = page.extract_text()
if page_text:
text += page_text
return text
except:
return extract_text(pdf_path)
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
return '\n'.join(para.text for para in doc.paragraphs)
except:
return ""
def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
tokens = tokenizer.tokenize(text)
chunks, start = [], 0
while start < len(tokens):
end = min(start + chunk_size, len(tokens))
chunk_tokens = tokens[start:end]
chunks.append(tokenizer.convert_tokens_to_string(chunk_tokens))
start += chunk_size - chunk_overlap
return chunks
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
question_embedding = embed_model.encode([question])[0]
D, I = index.search(np.array([question_embedding]), k)
return [text_chunks[i] for i in I[0]]
# Generate answer using Groq API with retries and timeout
def generate_answer_with_groq(question, context, retries=3, delay=2):
url = "https://api.groq.com/openai/v1/chat/completions"
api_key = os.environ.get("GROQ_API_KEY")
if not api_key:
return "β οΈ GROQ_API_KEY not set."
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
prompt = (
f"Customer asked: '{question}'\n\n"
f"Here is the relevant product or policy info to help:\n{context}\n\n"
f"Respond in a friendly and helpful tone as a toy shop support agent."
)
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": (
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
"Your goal is to politely answer customer questions, help them choose the right toys, "
"provide order or delivery information, explain return policies, and guide them through purchases. "
"Always sound warm, helpful, and trustworthy like a professional customer support agent."
)
},
{"role": "user", "content": prompt},
],
"temperature": 0.5,
"max_tokens": 300,
}
for attempt in range(retries):
try:
response = requests.post(url, headers=headers, json=payload, timeout=10)
response.raise_for_status()
result = response.json()
return result['choices'][0]['message']['content'].strip()
except requests.exceptions.HTTPError as e:
if response.status_code == 503 and attempt < retries - 1:
time.sleep(delay)
continue
else:
return f"β οΈ Groq API HTTPError: {e}"
except Exception as e:
return f"β οΈ Groq API Error: {e}"
# Twilio message fetch and send
def fetch_latest_incoming_message(account_sid, auth_token, conversation_sid):
client = Client(account_sid, auth_token)
messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
for msg in reversed(messages):
if msg.author.startswith("whatsapp:"):
return msg.body, msg.author, msg.index
return None, None, None
def send_twilio_message(account_sid, auth_token, conversation_sid, body):
try:
client = Client(account_sid, auth_token)
message = client.conversations.v1.conversations(conversation_sid).messages.create(author="system", body=body)
return message.sid
except Exception as e:
return str(e)
# Streamlit UI
st.set_page_config(page_title="Quasa β A Smart WhatsApp Chatbot", layout="wide")
st.title("π± Quasa β A Smart WhatsApp Chatbot")
if "last_index" not in st.session_state:
st.session_state.last_index = -1
account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
if not all([account_sid, auth_token, GROQ_API_KEY]):
st.warning("β οΈ Some secrets not found. Please enter missing credentials below:")
account_sid = st.text_input("Twilio SID", value=account_sid or "")
auth_token = st.text_input("Twilio Auth Token", type="password", value=auth_token or "")
GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
enable_autorefresh = st.checkbox("π Enable Auto-Refresh", value=True)
interval_seconds = st.selectbox("Refresh Interval (seconds)", options=[5, 10, 15, 30, 60], index=4)
if enable_autorefresh:
st_autorefresh(interval=interval_seconds * 1000, key="auto-refresh")
if all([account_sid, auth_token, GROQ_API_KEY, conversation_sid]):
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
@st.cache_data(show_spinner=False)
def setup_knowledge_base():
folder_path = "docs"
all_text = ""
try:
for file in os.listdir(folder_path):
if file.endswith(".pdf"):
all_text += extract_text_from_pdf(os.path.join(folder_path, file)) + "\n"
elif file.endswith((".docx", ".doc")):
all_text += extract_text_from_docx(os.path.join(folder_path, file)) + "\n"
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
chunks = chunk_text(all_text, tokenizer)
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(chunks)
dim = embeddings[0].shape[0]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings).astype('float32'))
return index, model, chunks
except Exception as e:
st.error(f"Error setting up knowledge base: {e}")
return None, None, None
index, embedding_model, text_chunks = setup_knowledge_base()
if index is None:
st.stop()
st.success("β
Knowledge base ready. Monitoring WhatsApp...")
with st.spinner("β³ Checking for new WhatsApp messages..."):
question, sender, msg_index = fetch_latest_incoming_message(account_sid, auth_token, conversation_sid)
if question and msg_index > st.session_state.last_index:
st.session_state.last_index = msg_index
st.info(f"π₯ New Question from {sender}:\n\n> {question}")
relevant_chunks = retrieve_chunks(question, index, embedding_model, text_chunks)
context = "\n\n".join(relevant_chunks)
answer = generate_answer_with_groq(question, context)
send_twilio_message(account_sid, auth_token, conversation_sid, answer)
st.success("π€ Answer sent via WhatsApp!")
st.markdown(f"### β¨ Answer:\n\n{answer}")
else:
st.caption("β
No new message yet. Waiting for refresh...")
else:
st.warning("β Please provide all required credentials and conversation SID.") |