File size: 7,706 Bytes
60c8a15
 
6bda95c
717234d
60c8a15
 
 
 
 
 
e992967
60c8a15
 
f51c85c
b036db9
f51c85c
e992967
60c8a15
 
 
 
 
f51c85c
 
60c8a15
 
 
 
0ee59bd
60c8a15
 
 
 
 
 
0ee59bd
60c8a15
 
 
 
 
 
 
 
 
 
 
 
 
 
0ee59bd
60c8a15
 
f51c85c
60c8a15
 
7ef0563
 
 
 
60c8a15
 
 
 
7ef0563
 
 
 
 
60c8a15
 
 
7ef0563
 
 
 
 
 
 
 
 
60c8a15
 
 
 
 
 
 
 
7ef0563
 
60c8a15
 
7ef0563
 
60c8a15
 
e992967
7ef0563
 
 
60c8a15
f51c85c
60c8a15
 
 
 
 
 
 
717234d
5a62060
1086067
717234d
e992967
717234d
1086067
60c8a15
 
f51c85c
 
 
 
 
 
e992967
 
 
 
 
 
 
f51c85c
 
 
 
 
a0b543c
f51c85c
 
 
e992967
f51c85c
e992967
 
f51c85c
e992967
 
 
f51c85c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e992967
 
f51c85c
 
e992967
 
 
f51c85c
 
 
 
 
 
 
 
 
 
 
 
 
717234d
f51c85c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
import os
import time
import streamlit as st
from twilio.rest import Client
from pdfminer.high_level import extract_text
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import PyPDF2
import requests
from streamlit_autorefresh import st_autorefresh

# Extract text from PDF with fallback
# --- Document Loaders ---
def extract_text_from_pdf(pdf_path):
    try:
        text = ""
        with open(pdf_path, 'rb') as file:
            pdf_reader = PyPDF2.PdfReader(file)
            for page_num in range(len(pdf_reader.pages)):
                page = pdf_reader.pages[page_num]
                page_text = page.extract_text()
                if page_text:
                    text += page_text
        return text
    except:
        return extract_text(pdf_path)

def extract_text_from_docx(docx_path):
    try:
        doc = docx.Document(docx_path)
        return '\n'.join(para.text for para in doc.paragraphs)
    except:
        return ""

def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
    tokens = tokenizer.tokenize(text)
    chunks, start = [], 0
    while start < len(tokens):
        end = min(start + chunk_size, len(tokens))
        chunk_tokens = tokens[start:end]
        chunks.append(tokenizer.convert_tokens_to_string(chunk_tokens))
        start += chunk_size - chunk_overlap
    return chunks

def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
    question_embedding = embed_model.encode([question])[0]
    D, I = index.search(np.array([question_embedding]), k)
    return [text_chunks[i] for i in I[0]]

# Generate answer using Groq API with retries and timeout
def generate_answer_with_groq(question, context, retries=3, delay=2):
    url = "https://api.groq.com/openai/v1/chat/completions"
    api_key = os.environ.get("GROQ_API_KEY")
    if not api_key:
        return "⚠️ GROQ_API_KEY not set."

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }
    prompt = (
        f"Customer asked: '{question}'\n\n"
        f"Here is the relevant product or policy info to help:\n{context}\n\n"
        f"Respond in a friendly and helpful tone as a toy shop support agent."
    )
    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
                "role": "system",
                "content": (
                    "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
                    "Your goal is to politely answer customer questions, help them choose the right toys, "
                    "provide order or delivery information, explain return policies, and guide them through purchases. "
                    "Always sound warm, helpful, and trustworthy like a professional customer support agent."
                )
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.5,
        "max_tokens": 300,
    }

    for attempt in range(retries):
        try:
            response = requests.post(url, headers=headers, json=payload, timeout=10)
            response.raise_for_status()
            result = response.json()
            return result['choices'][0]['message']['content'].strip()
        except requests.exceptions.HTTPError as e:
            if response.status_code == 503 and attempt < retries - 1:
                time.sleep(delay)
                continue
            else:
                return f"⚠️ Groq API HTTPError: {e}"
        except Exception as e:
            return f"⚠️ Groq API Error: {e}"

# Twilio message fetch and send
def fetch_latest_incoming_message(account_sid, auth_token, conversation_sid):
    client = Client(account_sid, auth_token)
    messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
    for msg in reversed(messages):
        if msg.author.startswith("whatsapp:"):
            return msg.body, msg.author, msg.index
    return None, None, None

def send_twilio_message(account_sid, auth_token, conversation_sid, body):
    try:
        client = Client(account_sid, auth_token)
        message = client.conversations.v1.conversations(conversation_sid).messages.create(author="system", body=body)
        return message.sid
    except Exception as e:
        return str(e)

# Streamlit UI
st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")

if "last_index" not in st.session_state:
    st.session_state.last_index = -1

account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")

if not all([account_sid, auth_token, GROQ_API_KEY]):
    st.warning("⚠️ Some secrets not found. Please enter missing credentials below:")
    account_sid = st.text_input("Twilio SID", value=account_sid or "")
    auth_token = st.text_input("Twilio Auth Token", type="password", value=auth_token or "")
    GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")

enable_autorefresh = st.checkbox("πŸ”„ Enable Auto-Refresh", value=True)
interval_seconds = st.selectbox("Refresh Interval (seconds)", options=[5, 10, 15, 30, 60], index=4)

if enable_autorefresh:
    st_autorefresh(interval=interval_seconds * 1000, key="auto-refresh")

if all([account_sid, auth_token, GROQ_API_KEY, conversation_sid]):
    os.environ["GROQ_API_KEY"] = GROQ_API_KEY

    @st.cache_data(show_spinner=False)
    def setup_knowledge_base():
        folder_path = "docs"
        all_text = ""
        try:
            for file in os.listdir(folder_path):
                if file.endswith(".pdf"):
                    all_text += extract_text_from_pdf(os.path.join(folder_path, file)) + "\n"
                elif file.endswith((".docx", ".doc")):
                    all_text += extract_text_from_docx(os.path.join(folder_path, file)) + "\n"
            tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
            chunks = chunk_text(all_text, tokenizer)
            model = SentenceTransformer('all-mpnet-base-v2')
            embeddings = model.encode(chunks)
            dim = embeddings[0].shape[0]
            index = faiss.IndexFlatL2(dim)
            index.add(np.array(embeddings).astype('float32'))
            return index, model, chunks
        except Exception as e:
            st.error(f"Error setting up knowledge base: {e}")
            return None, None, None

    index, embedding_model, text_chunks = setup_knowledge_base()
    if index is None:
        st.stop()

    st.success("βœ… Knowledge base ready. Monitoring WhatsApp...")

    with st.spinner("⏳ Checking for new WhatsApp messages..."):
        question, sender, msg_index = fetch_latest_incoming_message(account_sid, auth_token, conversation_sid)
        if question and msg_index > st.session_state.last_index:
            st.session_state.last_index = msg_index
            st.info(f"πŸ“₯ New Question from {sender}:\n\n> {question}")
            relevant_chunks = retrieve_chunks(question, index, embedding_model, text_chunks)
            context = "\n\n".join(relevant_chunks)
            answer = generate_answer_with_groq(question, context)
            send_twilio_message(account_sid, auth_token, conversation_sid, answer)
            st.success("πŸ“€ Answer sent via WhatsApp!")
            st.markdown(f"### ✨ Answer:\n\n{answer}")
        else:
            st.caption("βœ… No new message yet. Waiting for refresh...")
else:
    st.warning("❗ Please provide all required credentials and conversation SID.")