File size: 7,554 Bytes
60c8a15
 
6bda95c
717234d
60c8a15
 
 
 
 
 
e992967
60c8a15
 
f51c85c
b036db9
e1f9b2f
60c8a15
 
 
 
 
e1f9b2f
 
 
 
60c8a15
0ee59bd
60c8a15
 
 
 
 
 
0ee59bd
60c8a15
 
e1f9b2f
60c8a15
 
 
 
 
 
 
 
 
 
e1f9b2f
60c8a15
 
0ee59bd
60c8a15
 
e1f9b2f
60c8a15
 
7ef0563
 
 
 
60c8a15
 
 
 
7ef0563
 
 
 
 
60c8a15
 
 
7ef0563
 
 
 
 
 
 
 
 
60c8a15
 
 
 
 
 
 
 
7ef0563
 
60c8a15
 
7ef0563
 
60c8a15
 
e992967
7ef0563
 
 
60c8a15
e1f9b2f
60c8a15
 
 
 
 
 
 
717234d
5a62060
1086067
717234d
e992967
717234d
1086067
60c8a15
 
e1f9b2f
f51c85c
 
 
 
 
e992967
e1f9b2f
e992967
 
 
 
e1f9b2f
 
 
 
e992967
f51c85c
e992967
 
e1f9b2f
e992967
 
 
e1f9b2f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f51c85c
e992967
e1f9b2f
 
 
 
 
e992967
f51c85c
 
 
 
 
 
 
 
 
 
 
 
 
717234d
e1f9b2f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import os
import time
import streamlit as st
from twilio.rest import Client
from pdfminer.high_level import extract_text
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import PyPDF2
import requests
from streamlit_autorefresh import st_autorefresh

# --- Text Extraction ---
def extract_text_from_pdf(pdf_path):
    try:
        text = ""
        with open(pdf_path, 'rb') as file:
            pdf_reader = PyPDF2.PdfReader(file)
            for page in pdf_reader.pages:
                content = page.extract_text()
                if content:
                    text += content
        return text
    except:
        return extract_text(pdf_path)

def extract_text_from_docx(docx_path):
    try:
        doc = docx.Document(docx_path)
        return '\n'.join(para.text for para in doc.paragraphs)
    except:
        return ""

# --- Chunking ---
def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
    tokens = tokenizer.tokenize(text)
    chunks, start = [], 0
    while start < len(tokens):
        end = min(start + chunk_size, len(tokens))
        chunk_tokens = tokens[start:end]
        chunks.append(tokenizer.convert_tokens_to_string(chunk_tokens))
        start += chunk_size - chunk_overlap
    return chunks

# --- Retrieval ---
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
    question_embedding = embed_model.encode([question])[0]
    D, I = index.search(np.array([question_embedding]), k)
    return [text_chunks[i] for i in I[0]]

# --- Answer Generation ---
def generate_answer_with_groq(question, context, retries=3, delay=2):
    url = "https://api.groq.com/openai/v1/chat/completions"
    api_key = os.environ.get("GROQ_API_KEY")
    if not api_key:
        return "⚠️ GROQ_API_KEY not set."

    headers = {
        "Authorization": f"Bearer {api_key}",
        "Content-Type": "application/json",
    }
    prompt = (
        f"Customer asked: '{question}'\n\n"
        f"Here is the relevant product or policy info to help:\n{context}\n\n"
        f"Respond in a friendly and helpful tone as a toy shop support agent."
    )
    payload = {
        "model": "llama3-8b-8192",
        "messages": [
            {
                "role": "system",
                "content": (
                    "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
                    "Your goal is to politely answer customer questions, help them choose the right toys, "
                    "provide order or delivery information, explain return policies, and guide them through purchases. "
                    "Always sound warm, helpful, and trustworthy like a professional customer support agent."
                )
            },
            {"role": "user", "content": prompt},
        ],
        "temperature": 0.5,
        "max_tokens": 300,
    }

    for attempt in range(retries):
        try:
            response = requests.post(url, headers=headers, json=payload, timeout=10)
            response.raise_for_status()
            result = response.json()
            return result['choices'][0]['message']['content'].strip()
        except requests.exceptions.HTTPError as e:
            if response.status_code == 503 and attempt < retries - 1:
                time.sleep(delay)
                continue
            else:
                return f"⚠️ Groq API HTTPError: {e}"
        except Exception as e:
            return f"⚠️ Groq API Error: {e}"

# --- Twilio Messaging ---
def fetch_latest_incoming_message(account_sid, auth_token, conversation_sid):
    client = Client(account_sid, auth_token)
    messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
    for msg in reversed(messages):
        if msg.author.startswith("whatsapp:"):
            return msg.body, msg.author, msg.index
    return None, None, None

def send_twilio_message(account_sid, auth_token, conversation_sid, body):
    try:
        client = Client(account_sid, auth_token)
        message = client.conversations.v1.conversations(conversation_sid).messages.create(author="system", body=body)
        return message.sid
    except Exception as e:
        return str(e)

# --- Streamlit UI ---
st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")

if "last_index" not in st.session_state:
    st.session_state.last_index = -1

# --- Credentials ---
account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")

account_sid = st.text_input("πŸ” Twilio SID", value=account_sid or "")
auth_token = st.text_input("πŸ” Twilio Auth Token", type="password", value=auth_token or "")
GROQ_API_KEY = st.text_input("πŸ” GROQ API Key", type="password", value=GROQ_API_KEY or "")
conversation_sid = st.text_input("πŸ’¬ Twilio Conversation SID")

if all([account_sid, auth_token, GROQ_API_KEY, conversation_sid]):
    os.environ["GROQ_API_KEY"] = GROQ_API_KEY

    @st.cache_resource(show_spinner=True)
    def setup_knowledge_base():
        folder_path = "docs"
        all_text = ""
        for file in os.listdir(folder_path):
            full_path = os.path.join(folder_path, file)
            if file.endswith(".pdf"):
                all_text += extract_text_from_pdf(full_path) + "\n"
            elif file.endswith((".docx", ".doc")):
                all_text += extract_text_from_docx(full_path) + "\n"

        tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
        chunks = chunk_text(all_text, tokenizer)
        model = SentenceTransformer('all-mpnet-base-v2')
        embeddings = model.encode(chunks)
        dim = embeddings[0].shape[0]
        index = faiss.IndexFlatL2(dim)
        index.add(np.array(embeddings).astype('float32'))
        return index, model, chunks

    st.info("βš™οΈ Preparing knowledge base...")
    try:
        index, embedding_model, text_chunks = setup_knowledge_base()
        st.success("βœ… Knowledge base ready. Monitoring WhatsApp...")
    except Exception as e:
        st.error(f"❌ Failed to prepare knowledge base: {e}")
        st.stop()

    # --- Auto Refresh ---
    enable_autorefresh = st.checkbox("πŸ”„ Enable Auto-Refresh", value=True)
    interval_seconds = st.selectbox("Refresh Interval (seconds)", options=[5, 10, 15, 30, 60], index=4)
    if enable_autorefresh:
        st_autorefresh(interval=interval_seconds * 1000, key="auto-refresh")

    with st.spinner("⏳ Checking for new WhatsApp messages..."):
        question, sender, msg_index = fetch_latest_incoming_message(account_sid, auth_token, conversation_sid)
        if question and msg_index > st.session_state.last_index:
            st.session_state.last_index = msg_index
            st.info(f"πŸ“₯ New Question from {sender}:\n\n> {question}")
            relevant_chunks = retrieve_chunks(question, index, embedding_model, text_chunks)
            context = "\n\n".join(relevant_chunks)
            answer = generate_answer_with_groq(question, context)
            send_twilio_message(account_sid, auth_token, conversation_sid, answer)
            st.success("πŸ“€ Answer sent via WhatsApp!")
            st.markdown(f"### ✨ Answer:\n\n{answer}")
        else:
            st.caption("βœ… No new message yet. Waiting for refresh...")
else:
    st.warning("❗ Please provide all required credentials and conversation SID.")