Spaces:
Sleeping
Sleeping
import streamlit as st | |
from langchain_community.document_loaders import PyPDFLoader | |
from langchain.text_splitter import RecursiveCharacterTextSplitter | |
from langchain.vectorstores import FAISS | |
from langchain.embeddings import HuggingFaceEmbeddings | |
from langchain.chains import RetrievalQA | |
from langchain_community.llms import HuggingFaceEndpoint | |
import os | |
# --- UI --- | |
st.set_page_config(page_title="SMEHelpBot", layout="wide") | |
st.title("π€ SMEHelpBot β Your AI Assistant for Small Business") | |
uploaded_file = st.file_uploader("π Upload an industry-specific PDF (policy, FAQ, etc.):", type=["pdf"]) | |
user_query = st.text_input("π¬ Ask a business-related question:") | |
# --- Process PDF + RAG --- | |
if uploaded_file: | |
with open("temp.pdf", "wb") as f: | |
f.write(uploaded_file.read()) | |
loader = PyPDFLoader("temp.pdf") | |
pages = loader.load() | |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) | |
chunks = splitter.split_documents(pages) | |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") | |
db = FAISS.from_documents(chunks, embeddings) | |
retriever = db.as_retriever() | |
# --- Groq API (LLaMA3 via HuggingFaceEndpoint) --- | |
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets.get("HF_TOKEN") or "your_api_token_here" | |
llm = HuggingFaceEndpoint( | |
repo_id="meta-llama/Meta-Llama-3-8B-Instruct", | |
temperature=0.6, | |
max_new_tokens=512 | |
) | |
qa_chain = RetrievalQA.from_chain_type( | |
llm=llm, | |
retriever=retriever, | |
return_source_documents=True | |
) | |
if user_query: | |
with st.spinner("Generating response..."): | |
result = qa_chain({"query": user_query}) | |
st.success(result["result"]) | |
with st.expander("π Sources"): | |
for doc in result["source_documents"]: | |
st.markdown(f"β’ Page content: {doc.page_content[:300]}...") | |
else: | |
st.info("Upload a PDF and type your question to get started.") | |