Quasa / app.py
masadonline's picture
Update app.py
285269e verified
raw
history blame
12.4 kB
This is an app for an online toy store. CustomerOrder.csv contains orders of customer. Application is not fetching customer order and status correctly.
import os
import time
import threading
import streamlit as st
from twilio.rest import Client
from sentence_transformers import SentenceTransformer
from transformers import AutoTokenizer
import faiss
import numpy as np
import docx
from groq import Groq
import requests
from io import StringIO
from pdfminer.high_level import extract_text_to_fp
from pdfminer.layout import LAParams
from twilio.base.exceptions import TwilioRestException # Add this at the top
import pdfplumber
import datetime
import csv
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
os.environ["PYTORCH_JIT"] = "0"
# --- PDF Extraction ---
def _extract_tables_from_page(page):
"""Extracts tables from a single page of a PDF."""
tables = page.extract_tables()
if not tables:
return []
formatted_tables = []
for table in tables:
formatted_table = []
for row in table:
if row: # Filter out empty rows
formatted_row = [cell if cell is not None else "" for cell in row] # Replace None with ""
formatted_table.append(formatted_row)
else:
formatted_table.append([""]) # Append an empty row if the row is None
formatted_tables.append(formatted_table)
return formatted_tables
def extract_text_from_pdf(pdf_path):
text_output = StringIO()
all_tables = []
try:
with pdfplumber.open(pdf_path) as pdf:
for page in pdf.pages:
# Extract tables
page_tables = _extract_tables_from_page(page)
if page_tables:
all_tables.extend(page_tables)
# Extract text
text = page.extract_text()
if text:
text_output.write(text + "\n\n")
except Exception as e:
print(f"Error extracting with pdfplumber: {e}")
# Fallback to pdfminer if pdfplumber fails
with open(pdf_path, 'rb') as file:
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
extracted_text = text_output.getvalue()
return extracted_text, all_tables # Return text and list of tables
def clean_extracted_text(text):
lines = text.splitlines()
cleaned = []
for line in lines:
line = line.strip()
if line:
line = ' '.join(line.split())
cleaned.append(line)
return '\n'.join(cleaned)
def _format_tables_internal(tables):
"""Formats extracted tables into a string representation."""
formatted_tables_str = []
for table in tables:
# Use csv writer to handle commas and quotes correctly
with StringIO() as csvfile:
csvwriter = csv.writer(csvfile)
csvwriter.writerows(table)
formatted_tables_str.append(csvfile.getvalue())
return "\n\n".join(formatted_tables_str)
# --- DOCX Extraction ---
def extract_text_from_docx(docx_path):
try:
doc = docx.Document(docx_path)
return '\n'.join(para.text for para in doc.paragraphs)
except Exception:
return ""
# --- Chunking ---
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
tokens = tokenizer.tokenize(text)
chunks = []
start = 0
while start < len(tokens):
end = min(start + chunk_size, len(tokens))
chunk_tokens = tokens[start:end]
chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
chunks.append(chunk_text)
if end == len(tokens):
break
start += chunk_size - chunk_overlap
return chunks
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
question_embedding = embed_model.encode(question)
D, I = index.search(np.array([question_embedding]), k)
return [text_chunks[i] for i in I[0]]
# --- Groq Answer Generator ---
def generate_answer_with_groq(question, context):
url = "https://api.groq.com/openai/v1/chat/completions"
api_key = os.environ.get("GROQ_API_KEY")
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
prompt = (
f"Customer asked: '{question}'\n\n"
f"Here is the relevant product or policy info to help:\n{context}\n\n"
f"Respond in a friendly and helpful tone as a toy shop support agent."
)
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": (
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
"Your goal is to politely answer customer questions, help them choose the right toys, "
"provide order or delivery information, explain return policies, and guide them through purchases."
)
},
{"role": "user", "content": prompt},
],
"temperature": 0.5,
"max_tokens": 300,
}
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status()
return response.json()['choices'][0]['message']['content'].strip()
# --- Twilio Functions ---
def fetch_latest_incoming_message(client, conversation_sid):
try:
messages = client.conversations.v1.conversations(conversation_sid).messages.list()
for msg in reversed(messages):
if msg.author.startswith("whatsapp:"):
return {
"sid": msg.sid,
"body": msg.body,
"author": msg.author,
"timestamp": msg.date_created,
}
except TwilioRestException as e:
if e.status == 404:
print(f"Conversation {conversation_sid} not found, skipping...")
else:
print(f"Twilio error fetching messages for {conversation_sid}:", e)
except Exception as e:
#print(f"Unexpected error in fetch_latest_incoming_message for {conversation_sid}:", e)
pass
return None
def send_twilio_message(client, conversation_sid, body):
return client.conversations.v1.conversations(conversation_sid).messages.create(
author="system", body=body
)
# --- Load Knowledge Base ---
def setup_knowledge_base():
folder_path = "docs"
all_text = ""
# Process PDFs
for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
pdf_path = os.path.join(folder_path, filename)
text, tables = extract_text_from_pdf(pdf_path)
all_text += clean_extracted_text(text) + "\n"
all_text += _format_tables_internal(tables) + "\n"
# Process CSVs
for filename in ["CustomerOrders.csv"]:
csv_path = os.path.join(folder_path, filename)
try:
with open(csv_path, newline='', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile) # Use DictReader to get column names
for row in reader:
line = f"Order ID: {row.get('OrderID')} | Customer Name: {row.get('CustomerName')} | Order Date: {row.get('OrderDate')} | ProductID: {row.get('ProductID')} | Date: {row.get('OrderDate')} | Quantity: {row.get('Quantity')} | UnitPrice(USD): {row.get('UnitPrice(USD)')} | TotalPrice(USD): {row.get('TotalPrice(USD)')} | ShippingAddress: {row.get('ShippingAddress')} | OrderStatus: {row.get('OrderStatus')}"
all_text += line + "\n"
except Exception as e:
print(f"❌ Error reading {filename}: {e}")
for filename in ["Products.csv"]:
csv_path = os.path.join(folder_path, filename)
try:
with open(csv_path, newline='', encoding='utf-8') as csvfile:
reader = csv.DictReader(csvfile) # Use DictReader to get column names
for row in reader:
line = f"Product ID: {row.get('ProductID')} | Toy Name: {row.get('ToyName')} | Category: {row.get('Category')} | Price(USD): {row.get('Price(USD)')} | Stock Quantity: {row.get('StockQuantity')} | Description: {row.get('Description')}"
all_text += line + "\n"
except Exception as e:
print(f"❌ Error reading {filename}: {e}")
# Tokenization & chunking
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
chunks = chunk_text(all_text, tokenizer)
model = SentenceTransformer('all-mpnet-base-v2')
embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
dim = embeddings[0].shape[0]
index = faiss.IndexFlatL2(dim)
index.add(np.array(embeddings).astype('float32'))
return index, model, chunks
# --- Monitor Conversations ---
def start_conversation_monitor(client, index, embed_model, text_chunks):
processed_convos = set()
last_processed_timestamp = {}
def poll_conversation(convo_sid):
while True:
try:
latest_msg = fetch_latest_incoming_message(client, convo_sid)
if latest_msg:
msg_time = latest_msg["timestamp"]
if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
last_processed_timestamp[convo_sid] = msg_time
question = latest_msg["body"]
sender = latest_msg["author"]
print(f"\nπŸ“₯ New message from {sender} in {convo_sid}: {question}")
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
answer = generate_answer_with_groq(question, context)
send_twilio_message(client, convo_sid, answer)
print(f"πŸ“€ Replied to {sender}: {answer}")
time.sleep(3)
except Exception as e:
print(f"❌ Error in convo {convo_sid} polling:", e)
time.sleep(5)
def poll_new_conversations():
print("➑️ Monitoring for new WhatsApp conversations...")
while True:
try:
conversations = client.conversations.v1.conversations.list(limit=20)
for convo in conversations:
convo_full = client.conversations.v1.conversations(convo.sid).fetch()
if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
participants = client.conversations.v1.conversations(convo.sid).participants.list()
for p in participants:
address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
if address.startswith("whatsapp:"):
print(f"πŸ†• New WhatsApp convo found: {convo.sid}")
processed_convos.add(convo.sid)
threading.Thread(target=poll_conversation, args=(convo.sid,), daemon=True).start()
except Exception as e:
print("❌ Error polling conversations:", e)
time.sleep(5)
# βœ… Launch conversation polling monitor
threading.Thread(target=poll_new_conversations, daemon=True).start()
# --- Streamlit UI ---
st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")
account_sid = st.secrets.get("TWILIO_SID")
auth_token = st.secrets.get("TWILIO_TOKEN")
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
if not all([account_sid, auth_token, GROQ_API_KEY]):
st.warning("⚠️ Provide all credentials below:")
account_sid = st.text_input("Twilio SID", value=account_sid or "")
auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
if all([account_sid, auth_token, GROQ_API_KEY]):
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
client = Client(account_sid, auth_token)
st.success("🟒 Monitoring new WhatsApp conversations...")
index, model, chunks = setup_knowledge_base()
threading.Thread(target=start_conversation_monitor, args=(client, index, model, chunks), daemon=True).start()
st.info("⏳ Waiting for new messages...")