Quasa / app.py
masadonline's picture
Update app.py
33aebae verified
raw
history blame
5.92 kB
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
import pandas as pd
import os
import io
import requests
# --- 1. Data Loading and Preprocessing ---
@st.cache_data()
def load_and_process_pdfs_from_folder(docs_folder="docs"):
"""Loads and processes all PDF files from the specified folder."""
all_text = ""
all_tables = []
for filename in os.listdir(docs_folder):
if filename.endswith(".pdf"):
filepath = os.path.join(docs_folder, filename)
try:
with open(filepath, 'rb') as file:
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
all_text += page.extract_text() + "\n"
try:
for table in page.extract_tables():
df = pd.DataFrame(table)
all_tables.append(df)
except Exception as e:
print(f"Could not extract tables from page in {filename}. Error: {e}")
except Exception as e:
st.error(f"Error reading PDF {filename}: {e}")
return all_text, all_tables
@st.cache_data()
def split_text_into_chunks(text):
"""Splits the text into smaller, manageable chunks."""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks = text_splitter.split_text(text)
return chunks
@st.cache_data()
def create_vectorstore(chunks):
"""Creates a vectorstore from the text chunks using HuggingFace embeddings."""
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectorstore = FAISS.from_texts(chunks, embeddings)
return vectorstore
# --- 2. Question Answering with Groq ---
def generate_answer_with_groq(question, context):
"""Generates an answer using the Groq API."""
url = "https://api.groq.com/openai/v1/chat/completions"
api_key = os.environ.get("GROQ_API_KEY")
if not api_key:
st.error("GROQ_API_KEY environment variable not found. Please set it.")
return None # Indicate failure
headers = {
"Authorization": f"Bearer {api_key}",
"Content-Type": "application/json",
}
prompt = (
f"Customer asked: '{question}'\n\n"
f"Here is the relevant product or policy info to help:\n{context}\n\n"
f"Respond in a friendly and helpful tone as a toy shop support agent."
)
payload = {
"model": "llama3-8b-8192",
"messages": [
{
"role": "system",
"content": (
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
"Your goal is to politely answer customer questions, help them choose the right toys, "
"provide order or delivery information, explain return policies, and guide them through purchases."
)
},
{"role": "user", "content": prompt},
],
"temperature": 0.5,
"max_tokens": 300,
}
try:
response = requests.post(url, headers=headers, json=payload)
response.raise_for_status() # Raise an exception for bad status codes
return response.json()['choices'][0]['message']['content'].strip()
except requests.exceptions.RequestException as e:
st.error(f"Error communicating with Groq API: {e}")
return "An error occurred while trying to get the answer."
def perform_rag_groq(vectorstore, query):
"""Performs retrieval and generates an answer using Groq."""
retriever = vectorstore.as_retriever()
relevant_docs = retriever.get_relevant_documents(query)
context = "\n\n".join([doc.page_content for doc in relevant_docs])
answer = generate_answer_with_groq(query, context)
return {"answer": answer, "sources": [doc.metadata['source'] for doc in relevant_docs] if relevant_docs else []}
# --- 3. Streamlit UI ---
def main():
st.title("PDF Q&A with Local Docs (Powered by Groq)")
st.info("Make sure you have a 'docs' folder in the same directory as this script containing your PDF files.")
with st.spinner("Loading and processing PDF(s)..."):
all_text, all_tables = load_and_process_pdfs_from_folder()
if all_text:
with st.spinner("Creating knowledge base..."):
chunks = split_text_into_chunks(all_text)
# We need to add metadata (source) to the chunks for accurate source tracking
metadatas = [{"source": f"doc_{i+1}"} for i in range(len(chunks))] # Basic source tracking
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectorstore = FAISS.from_texts(chunks, embeddings, metadatas=metadatas)
query = st.text_input("Ask a question about the documents:")
if query:
with st.spinner("Searching for answer..."):
result = perform_rag_groq(vectorstore, query)
if result and result.get("answer"):
st.subheader("Answer:")
st.write(result["answer"])
if "sources" in result and result["sources"]:
st.subheader("Source:")
st.write(", ".join(result["sources"]))
else:
st.warning("Could not generate an answer.")
if all_tables:
st.subheader("Extracted Tables:")
for i, table_df in enumerate(all_tables):
st.write(f"Table {i+1}:")
st.dataframe(table_df)
elif not all_text:
st.warning("No PDF files found in the 'docs' folder.")
if __name__ == "__main__":
main()