Quasa / app.py
masadonline's picture
Update app.py
f4e7b4f verified
raw
history blame
3.76 kB
import streamlit as st
from PyPDF2 import PdfReader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
from langchain.llms import HuggingFaceHub
from langchain.chains import RetrievalQAWithSourcesChain
import pandas as pd
import os
import io
# --- 1. Data Loading and Preprocessing ---
@st.cache_data()
def load_and_process_pdfs_from_folder(docs_folder="docs"):
"""Loads and processes all PDF files from the specified folder."""
all_text = ""
all_tables = []
for filename in os.listdir(docs_folder):
if filename.endswith(".pdf"):
filepath = os.path.join(docs_folder, filename)
try:
with open(filepath, 'rb') as file:
pdf_reader = PdfReader(file)
for page in pdf_reader.pages:
all_text += page.extract_text() + "\n"
try:
for table in page.extract_tables():
df = pd.DataFrame(table)
all_tables.append(df)
except Exception as e:
print(f"Could not extract tables from page in {filename}. Error: {e}")
except Exception as e:
st.error(f"Error reading PDF {filename}: {e}")
return all_text, all_tables
@st.cache_data()
def split_text_into_chunks(text):
"""Splits the text into smaller, manageable chunks."""
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=100)
chunks = text_splitter.split_text(text)
return chunks
@st.cache_data()
def create_vectorstore(chunks):
"""Creates a vectorstore from the text chunks using HuggingFace embeddings."""
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
vectorstore = FAISS.from_texts(chunks, embeddings)
return vectorstore
# --- 2. Question Answering with RAG ---
@st.cache_resource()
def setup_llm():
"""Sets up the Hugging Face Hub LLM."""
llm = HuggingFaceHub(repo_id="google/flan-t5-xxl", model_kwargs={"temperature": 0.5, "max_length": 512})
return llm
def perform_rag(vectorstore, llm, query):
"""Performs retrieval-augmented generation."""
qa_chain = RetrievalQAWithSourcesChain.from_llm(llm, retriever=vectorstore.as_retriever())
result = qa_chain({"question": query})
return result
# --- 3. Streamlit UI ---
def main():
st.title("PDF Q&A with Local Docs")
st.info("Make sure you have a 'docs' folder in the same directory as this script containing your PDF files.")
with st.spinner("Loading and processing PDF(s)..."):
all_text, all_tables = load_and_process_pdfs_from_folder()
if all_text:
with st.spinner("Creating knowledge base..."):
chunks = split_text_into_chunks(all_text)
vectorstore = create_vectorstore(chunks)
llm = setup_llm()
query = st.text_input("Ask a question about the documents:")
if query:
with st.spinner("Searching for answer..."):
result = perform_rag(vectorstore, llm, query)
st.subheader("Answer:")
st.write(result["answer"])
if "sources" in result:
st.subheader("Source:")
st.write(result["sources"])
if all_tables:
st.subheader("Extracted Tables:")
for i, table_df in enumerate(all_tables):
st.write(f"Table {i+1}:")
st.dataframe(table_df)
elif not all_text:
st.warning("No PDF files found in the 'docs' folder.")
if __name__ == "__main__":
main()