Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,140 +1,213 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
3 |
-
import
|
4 |
-
import
|
5 |
-
|
|
|
|
|
|
|
|
|
6 |
import faiss
|
7 |
import numpy as np
|
8 |
-
|
9 |
-
|
10 |
from groq import Groq
|
11 |
-
import
|
12 |
-
import
|
13 |
-
from
|
14 |
-
from
|
15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
-
# --- Configuration ---
|
18 |
-
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
19 |
-
TWILIO_ACCOUNT_SID = os.getenv("TWILIO_ACCOUNT_SID")
|
20 |
-
TWILIO_AUTH_TOKEN = os.getenv("TWILIO_AUTH_TOKEN")
|
21 |
-
TWILIO_SERVICE_SID = os.getenv("TWILIO_SERVICE_SID")
|
22 |
-
|
23 |
-
# --- Initialize Clients ---
|
24 |
-
client = Groq(api_key=GROQ_API_KEY)
|
25 |
-
twilio_client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN)
|
26 |
-
tokenizer = AutoTokenizer.from_pretrained("openai-community/gpt2")
|
27 |
-
|
28 |
-
# --- Flask App for Webhook ---
|
29 |
-
flask_app = Flask(__name__)
|
30 |
-
latest_conversation_sid = None
|
31 |
-
conversation_index = None
|
32 |
-
chunk_store = {}
|
33 |
-
|
34 |
-
# --- Helper Functions ---
|
35 |
-
def extract_text_with_pdfplumber(pdf_path):
|
36 |
-
full_text = ""
|
37 |
-
with pdfplumber.open(pdf_path) as pdf:
|
38 |
-
for page in pdf.pages:
|
39 |
-
text = page.extract_text()
|
40 |
-
if text:
|
41 |
-
full_text += text + "\n"
|
42 |
-
return full_text
|
43 |
-
|
44 |
-
def chunk_text(text, chunk_size=256, chunk_overlap=64, max_tokens=512):
|
45 |
tokens = tokenizer.tokenize(text)
|
46 |
chunks = []
|
47 |
start = 0
|
48 |
-
while start < len(tokens):
|
49 |
-
end = min(start + chunk_size, len(tokens))
|
50 |
-
chunk_tokens = tokens[start:end]
|
51 |
-
chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
|
52 |
-
if len(tokenizer.encode(chunk_text)) <= max_tokens:
|
53 |
-
chunks.append(chunk_text.strip())
|
54 |
start += chunk_size - chunk_overlap
|
55 |
return chunks
|
56 |
|
57 |
-
def
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
prompt = f"""
|
75 |
-
You are a helpful assistant. Use the following context to answer the question:
|
76 |
-
{context}
|
77 |
-
Question: {query}
|
78 |
-
Answer:
|
79 |
-
"""
|
80 |
-
response = client.chat.completions.create(
|
81 |
-
messages=[{"role": "user", "content": prompt}],
|
82 |
-
model="llama3-8b-8192"
|
83 |
)
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
|
102 |
# --- Streamlit UI ---
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
st.markdown("**Waiting for incoming WhatsApp messages...**")
|
129 |
-
|
130 |
-
# --- Run Flask in Background Thread ---
|
131 |
-
def run_flask():
|
132 |
-
flask_app.run(host="0.0.0.0", port=5000)
|
133 |
-
|
134 |
-
flask_thread = threading.Thread(target=run_flask)
|
135 |
-
flask_thread.daemon = True
|
136 |
-
flask_thread.start()
|
137 |
-
|
138 |
-
# --- Start Streamlit App ---
|
139 |
-
if __name__ == "__main__":
|
140 |
-
streamlit_ui()
|
|
|
|
|
1 |
import os
|
2 |
+
import time
|
3 |
+
import threading
|
4 |
+
import streamlit as st
|
5 |
+
from twilio.rest import Client
|
6 |
+
from sentence_transformers import SentenceTransformer
|
7 |
+
from transformers import AutoTokenizer
|
8 |
+
|
9 |
import faiss
|
10 |
import numpy as np
|
11 |
+
import docx
|
12 |
+
|
13 |
from groq import Groq
|
14 |
+
import requests
|
15 |
+
from io import StringIO
|
16 |
+
from pdfminer.high_level import extract_text_to_fp
|
17 |
+
from pdfminer.layout import LAParams
|
18 |
+
|
19 |
+
# --- PDF Extraction (Improved for Tables & Paragraphs) ---
|
20 |
+
def extract_text_from_pdf(pdf_path):
|
21 |
+
output_string = StringIO()
|
22 |
+
with open(pdf_path, 'rb') as file:
|
23 |
+
extract_text_to_fp(file, output_string, laparams=LAParams(), output_type='text', codec=None)
|
24 |
+
return output_string.getvalue()
|
25 |
+
|
26 |
+
def clean_extracted_text(text):
|
27 |
+
lines = text.splitlines()
|
28 |
+
cleaned = []
|
29 |
+
for line in lines:
|
30 |
+
line = line.strip()
|
31 |
+
if line:
|
32 |
+
line = ' '.join(line.split()) # remove extra spaces
|
33 |
+
cleaned.append(line)
|
34 |
+
return '\n'.join(cleaned)
|
35 |
+
|
36 |
+
# --- DOCX Extraction ---
|
37 |
+
def extract_text_from_docx(docx_path):
|
38 |
+
try:
|
39 |
+
doc = docx.Document(docx_path)
|
40 |
+
return '\n'.join(para.text for para in doc.paragraphs)
|
41 |
+
except:
|
42 |
+
return ""
|
43 |
+
|
44 |
+
# --- Chunking & Retrieval ---
|
45 |
+
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
|
46 |
+
|
47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
48 |
tokens = tokenizer.tokenize(text)
|
49 |
chunks = []
|
50 |
start = 0
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
start += chunk_size - chunk_overlap
|
52 |
return chunks
|
53 |
|
54 |
+
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
55 |
+
question_embedding = embed_model.encode(question)
|
56 |
+
D, I = index.search(np.array([question_embedding]), k)
|
57 |
+
return [text_chunks[i] for i in I[0]]
|
58 |
+
|
59 |
+
# --- Groq Answer Generator ---
|
60 |
+
def generate_answer_with_groq(question, context):
|
61 |
+
url = "https://api.groq.com/openai/v1/chat/completions"
|
62 |
+
api_key = os.environ.get("GROQ_API_KEY")
|
63 |
+
headers = {
|
64 |
+
"Authorization": f"Bearer {api_key}",
|
65 |
+
"Content-Type": "application/json",
|
66 |
+
}
|
67 |
+
prompt = (
|
68 |
+
f"Customer asked: '{question}'\n\n"
|
69 |
+
f"Here is the relevant product or policy info to help:\n{context}\n\n"
|
70 |
+
f"Respond in a friendly and helpful tone as a toy shop support agent."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
)
|
72 |
+
payload = {
|
73 |
+
"model": "llama3-8b-8192",
|
74 |
+
"messages": [
|
75 |
+
{
|
76 |
+
"role": "system",
|
77 |
+
"content": (
|
78 |
+
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
|
79 |
+
"Your goal is to politely answer customer questions, help them choose the right toys, "
|
80 |
+
"provide order or delivery information, explain return policies, and guide them through purchases."
|
81 |
+
)
|
82 |
+
},
|
83 |
+
{"role": "user", "content": prompt},
|
84 |
+
],
|
85 |
+
"temperature": 0.5,
|
86 |
+
"max_tokens": 300,
|
87 |
+
}
|
88 |
+
response = requests.post(url, headers=headers, json=payload)
|
89 |
+
response.raise_for_status()
|
90 |
+
return response.json()['choices'][0]['message']['content'].strip()
|
91 |
+
|
92 |
+
# --- Twilio Functions ---
|
93 |
+
def get_whatsapp_conversation_sids(client):
|
94 |
+
sids = []
|
95 |
+
conversations = client.conversations.v1.conversations.list(limit=50)
|
96 |
+
for convo in conversations:
|
97 |
+
try:
|
98 |
+
participants = client.conversations.v1.conversations(convo.sid).participants.list()
|
99 |
+
for p in participants:
|
100 |
+
if (p.identity and p.identity.startswith("whatsapp:")) or (
|
101 |
+
p.messaging_binding and p.messaging_binding.get("address", "").startswith("whatsapp:")
|
102 |
+
):
|
103 |
+
sids.append(convo.sid)
|
104 |
+
break
|
105 |
+
except:
|
106 |
+
continue
|
107 |
+
return sids
|
108 |
+
|
109 |
+
def fetch_latest_incoming_message(client, conversation_sid):
|
110 |
+
messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
|
111 |
+
for msg in reversed(messages):
|
112 |
+
if msg.author.startswith("whatsapp:"):
|
113 |
+
return {
|
114 |
+
"sid": msg.sid,
|
115 |
+
"body": msg.body,
|
116 |
+
"author": msg.author,
|
117 |
+
"timestamp": msg.date_created,
|
118 |
+
}
|
119 |
+
return None
|
120 |
+
|
121 |
+
def send_twilio_message(client, conversation_sid, body):
|
122 |
+
return client.conversations.v1.conversations(conversation_sid).messages.create(
|
123 |
+
author="system", body=body
|
124 |
+
)
|
125 |
+
|
126 |
+
# --- Load Knowledge Base ---
|
127 |
+
def setup_knowledge_base():
|
128 |
+
folder_path = "docs"
|
129 |
+
all_text = ""
|
130 |
+
for file in os.listdir(folder_path):
|
131 |
+
path = os.path.join(folder_path, file)
|
132 |
+
if file.endswith(".pdf"):
|
133 |
+
raw_text = extract_text_from_pdf(path)
|
134 |
+
all_text += clean_extracted_text(raw_text) + "\n"
|
135 |
+
elif file.endswith((".docx", ".doc")):
|
136 |
+
all_text += extract_text_from_docx(path) + "\n"
|
137 |
+
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
139 |
+
chunks = chunk_text(all_text, tokenizer)
|
140 |
+
model = SentenceTransformer('all-mpnet-base-v2')
|
141 |
+
embeddings = model.encode(chunks, truncate=True, show_progress_bar=False)
|
142 |
+
dim = embeddings[0].shape[0]
|
143 |
+
index = faiss.IndexFlatL2(dim)
|
144 |
+
index.add(np.array(embeddings).astype('float32'))
|
145 |
+
return index, model, chunks
|
146 |
+
|
147 |
+
# --- Monitor Conversations ---
|
148 |
+
def start_conversation_monitor(client, index, embed_model, text_chunks):
|
149 |
+
monitored_sids = set()
|
150 |
+
|
151 |
+
def poll_conversation(convo_sid):
|
152 |
+
last_processed_timestamp = None
|
153 |
+
while True:
|
154 |
+
try:
|
155 |
+
latest_msg = fetch_latest_incoming_message(client, convo_sid)
|
156 |
+
if latest_msg:
|
157 |
+
msg_time = latest_msg["timestamp"]
|
158 |
+
if last_processed_timestamp is None or msg_time > last_processed_timestamp:
|
159 |
+
last_processed_timestamp = msg_time
|
160 |
+
question = latest_msg["body"]
|
161 |
+
sender = latest_msg["author"]
|
162 |
+
print(f"\nπ₯ New message from {sender} in {convo_sid}: {question}")
|
163 |
+
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
|
164 |
+
answer = generate_answer_with_groq(question, context)
|
165 |
+
send_twilio_message(client, convo_sid, answer)
|
166 |
+
print(f"π€ Replied to {sender}: {answer}")
|
167 |
+
time.sleep(3)
|
168 |
+
except Exception as e:
|
169 |
+
print(f"β Error in convo {convo_sid} polling:", e)
|
170 |
+
time.sleep(5)
|
171 |
+
|
172 |
+
def monitor_all_conversations():
|
173 |
+
while True:
|
174 |
+
try:
|
175 |
+
current_sids = set(get_whatsapp_conversation_sids(client))
|
176 |
+
new_sids = current_sids - monitored_sids
|
177 |
+
for sid in new_sids:
|
178 |
+
print(f"β‘οΈ Monitoring new conversation: {sid}")
|
179 |
+
monitored_sids.add(sid)
|
180 |
+
threading.Thread(target=poll_conversation, args=(sid,), daemon=True).start()
|
181 |
+
time.sleep(15)
|
182 |
+
except Exception as e:
|
183 |
+
print("β Error in conversation monitoring loop:", e)
|
184 |
+
time.sleep(15)
|
185 |
+
|
186 |
+
threading.Thread(target=monitor_all_conversations, daemon=True).start()
|
187 |
|
188 |
# --- Streamlit UI ---
|
189 |
+
st.set_page_config(page_title="Quasa β A Smart WhatsApp Chatbot", layout="wide")
|
190 |
+
st.title("π± Quasa β A Smart WhatsApp Chatbot")
|
191 |
+
|
192 |
+
account_sid = st.secrets.get("TWILIO_SID")
|
193 |
+
auth_token = st.secrets.get("TWILIO_TOKEN")
|
194 |
+
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
|
195 |
+
|
196 |
+
if not all([account_sid, auth_token, GROQ_API_KEY]):
|
197 |
+
st.warning("β οΈ Provide all credentials below:")
|
198 |
+
account_sid = st.text_input("Twilio SID", value=account_sid or "")
|
199 |
+
auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
|
200 |
+
GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
|
201 |
+
|
202 |
+
if all([account_sid, auth_token, GROQ_API_KEY]):
|
203 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
204 |
+
client = Client(account_sid, auth_token)
|
205 |
+
conversation_sids = get_whatsapp_conversation_sids(client)
|
206 |
+
|
207 |
+
if conversation_sids:
|
208 |
+
st.success(f"β
{len(conversation_sids)} WhatsApp conversation(s) found. Initializing chatbot...")
|
209 |
+
index, model, chunks = setup_knowledge_base()
|
210 |
+
start_conversation_monitor(client, index, model, chunks)
|
211 |
+
st.success("π’ Chatbot is running in background and will reply to new messages.")
|
212 |
+
else:
|
213 |
+
st.error("β No WhatsApp conversations found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|