Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import os
|
2 |
import time
|
3 |
import threading
|
@@ -22,74 +23,79 @@ APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
|
22 |
|
23 |
os.environ["PYTORCH_JIT"] = "0"
|
24 |
|
25 |
-
#
|
26 |
def _extract_tables_from_page(page):
|
|
|
|
|
27 |
tables = page.extract_tables()
|
|
|
|
|
|
|
28 |
formatted_tables = []
|
29 |
for table in tables:
|
30 |
formatted_table = []
|
31 |
for row in table:
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
formatted_tables.append(formatted_table)
|
35 |
return formatted_tables
|
36 |
-
|
37 |
def extract_text_from_pdf(pdf_path):
|
38 |
text_output = StringIO()
|
39 |
all_tables = []
|
40 |
try:
|
41 |
with pdfplumber.open(pdf_path) as pdf:
|
42 |
for page in pdf.pages:
|
43 |
-
|
|
|
|
|
|
|
|
|
44 |
text = page.extract_text()
|
45 |
if text:
|
46 |
text_output.write(text + "\n\n")
|
47 |
except Exception as e:
|
48 |
-
print(f"pdfplumber
|
|
|
49 |
with open(pdf_path, 'rb') as file:
|
50 |
-
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
|
51 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
def _format_tables_internal(tables):
|
|
|
|
|
54 |
formatted_tables_str = []
|
55 |
for table in tables:
|
|
|
56 |
with StringIO() as csvfile:
|
57 |
-
|
58 |
-
|
59 |
formatted_tables_str.append(csvfile.getvalue())
|
60 |
return "\n\n".join(formatted_tables_str)
|
61 |
|
62 |
-
|
63 |
-
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
|
64 |
-
|
65 |
def extract_text_from_docx(docx_path):
|
66 |
try:
|
67 |
doc = docx.Document(docx_path)
|
68 |
return '\n'.join(para.text for para in doc.paragraphs)
|
69 |
-
except:
|
70 |
-
return ""
|
71 |
-
|
72 |
-
def load_json_data(json_path):
|
73 |
-
try:
|
74 |
-
with open(json_path, 'r', encoding='utf-8') as f:
|
75 |
-
data = json.load(f)
|
76 |
-
if isinstance(data, dict):
|
77 |
-
# Flatten dictionary values (avoiding nested structures as strings)
|
78 |
-
return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
|
79 |
-
elif isinstance(data, list):
|
80 |
-
# Flatten list of dictionaries
|
81 |
-
all_items = []
|
82 |
-
for item in data:
|
83 |
-
if isinstance(item, dict):
|
84 |
-
all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
|
85 |
-
return "\n\n".join(all_items)
|
86 |
-
else:
|
87 |
-
return json.dumps(data, ensure_ascii=False, indent=2)
|
88 |
-
except Exception as e:
|
89 |
-
print(f"JSON read error: {e}")
|
90 |
return ""
|
91 |
|
92 |
-
#
|
93 |
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
|
94 |
tokens = tokenizer.tokenize(text)
|
95 |
chunks = []
|
@@ -104,13 +110,12 @@ def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512
|
|
104 |
start += chunk_size - chunk_overlap
|
105 |
return chunks
|
106 |
|
107 |
-
|
108 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
109 |
-
|
110 |
-
D, I = index.search(np.array([
|
111 |
return [text_chunks[i] for i in I[0]]
|
112 |
|
113 |
-
#
|
114 |
def generate_answer_with_groq(question, context):
|
115 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
116 |
api_key = os.environ.get("GROQ_API_KEY")
|
@@ -120,9 +125,8 @@ def generate_answer_with_groq(question, context):
|
|
120 |
}
|
121 |
prompt = (
|
122 |
f"Customer asked: '{question}'\n\n"
|
123 |
-
f"Here is the relevant
|
124 |
-
f"Respond in a friendly and helpful tone as a toy shop support agent
|
125 |
-
f"addressing the customer by their name if it's available in the context."
|
126 |
)
|
127 |
payload = {
|
128 |
"model": "llama3-8b-8192",
|
@@ -130,11 +134,9 @@ def generate_answer_with_groq(question, context):
|
|
130 |
{
|
131 |
"role": "system",
|
132 |
"content": (
|
133 |
-
"You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
|
134 |
-
"
|
135 |
-
"
|
136 |
-
"and address them directly. If the context contains order details and status, "
|
137 |
-
"include that information in your response."
|
138 |
)
|
139 |
},
|
140 |
{"role": "user", "content": prompt},
|
@@ -174,37 +176,46 @@ def send_twilio_message(client, conversation_sid, body):
|
|
174 |
author="system", body=body
|
175 |
)
|
176 |
|
177 |
-
#
|
178 |
def setup_knowledge_base():
|
179 |
folder_path = "docs"
|
180 |
all_text = ""
|
181 |
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
-
|
|
|
205 |
chunks = chunk_text(all_text, tokenizer)
|
206 |
model = SentenceTransformer('all-mpnet-base-v2')
|
207 |
-
embeddings = model.encode(chunks, show_progress_bar=False)
|
208 |
dim = embeddings[0].shape[0]
|
209 |
index = faiss.IndexFlatL2(dim)
|
210 |
index.add(np.array(embeddings).astype('float32'))
|
@@ -264,10 +275,7 @@ def start_conversation_monitor(client, index, embed_model, text_chunks):
|
|
264 |
# --- Streamlit UI ---
|
265 |
st.set_page_config(page_title="Quasa β Al-Powered WhatsApp Chatbot", layout="wide")
|
266 |
st.title("π± Quasa β Al-Powered WhatsApp Chatbot")
|
267 |
-
index, model, chunks = setup_knowledge_base()
|
268 |
|
269 |
-
st.success("Knowledge base loaded.")
|
270 |
-
#st.write("Waiting for WhatsApp messages...")
|
271 |
account_sid = st.secrets.get("TWILIO_SID")
|
272 |
auth_token = st.secrets.get("TWILIO_TOKEN")
|
273 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
|
|
|
1 |
+
#Backup
|
2 |
import os
|
3 |
import time
|
4 |
import threading
|
|
|
23 |
|
24 |
os.environ["PYTORCH_JIT"] = "0"
|
25 |
|
26 |
+
# --- PDF Extraction ---
|
27 |
def _extract_tables_from_page(page):
|
28 |
+
"""Extracts tables from a single page of a PDF."""
|
29 |
+
|
30 |
tables = page.extract_tables()
|
31 |
+
if not tables:
|
32 |
+
return []
|
33 |
+
|
34 |
formatted_tables = []
|
35 |
for table in tables:
|
36 |
formatted_table = []
|
37 |
for row in table:
|
38 |
+
if row: # Filter out empty rows
|
39 |
+
formatted_row = [cell if cell is not None else "" for cell in row] # Replace None with ""
|
40 |
+
formatted_table.append(formatted_row)
|
41 |
+
else:
|
42 |
+
formatted_table.append([""]) # Append an empty row if the row is None
|
43 |
formatted_tables.append(formatted_table)
|
44 |
return formatted_tables
|
45 |
+
|
46 |
def extract_text_from_pdf(pdf_path):
|
47 |
text_output = StringIO()
|
48 |
all_tables = []
|
49 |
try:
|
50 |
with pdfplumber.open(pdf_path) as pdf:
|
51 |
for page in pdf.pages:
|
52 |
+
# Extract tables
|
53 |
+
page_tables = _extract_tables_from_page(page)
|
54 |
+
if page_tables:
|
55 |
+
all_tables.extend(page_tables)
|
56 |
+
# Extract text
|
57 |
text = page.extract_text()
|
58 |
if text:
|
59 |
text_output.write(text + "\n\n")
|
60 |
except Exception as e:
|
61 |
+
print(f"Error extracting with pdfplumber: {e}")
|
62 |
+
# Fallback to pdfminer if pdfplumber fails
|
63 |
with open(pdf_path, 'rb') as file:
|
64 |
+
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
|
65 |
+
extracted_text = text_output.getvalue()
|
66 |
+
return extracted_text, all_tables # Return text and list of tables
|
67 |
+
|
68 |
+
def clean_extracted_text(text):
|
69 |
+
lines = text.splitlines()
|
70 |
+
cleaned = []
|
71 |
+
for line in lines:
|
72 |
+
line = line.strip()
|
73 |
+
if line:
|
74 |
+
line = ' '.join(line.split())
|
75 |
+
cleaned.append(line)
|
76 |
+
return '\n'.join(cleaned)
|
77 |
|
78 |
def _format_tables_internal(tables):
|
79 |
+
"""Formats extracted tables into a string representation."""
|
80 |
+
|
81 |
formatted_tables_str = []
|
82 |
for table in tables:
|
83 |
+
# Use csv writer to handle commas and quotes correctly
|
84 |
with StringIO() as csvfile:
|
85 |
+
csvwriter = csv.writer(csvfile)
|
86 |
+
csvwriter.writerows(table)
|
87 |
formatted_tables_str.append(csvfile.getvalue())
|
88 |
return "\n\n".join(formatted_tables_str)
|
89 |
|
90 |
+
# --- DOCX Extraction ---
|
|
|
|
|
91 |
def extract_text_from_docx(docx_path):
|
92 |
try:
|
93 |
doc = docx.Document(docx_path)
|
94 |
return '\n'.join(para.text for para in doc.paragraphs)
|
95 |
+
except Exception:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
return ""
|
97 |
|
98 |
+
# --- Chunking ---
|
99 |
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
|
100 |
tokens = tokenizer.tokenize(text)
|
101 |
chunks = []
|
|
|
110 |
start += chunk_size - chunk_overlap
|
111 |
return chunks
|
112 |
|
|
|
113 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
114 |
+
question_embedding = embed_model.encode(question)
|
115 |
+
D, I = index.search(np.array([question_embedding]), k)
|
116 |
return [text_chunks[i] for i in I[0]]
|
117 |
|
118 |
+
# --- Groq Answer Generator ---
|
119 |
def generate_answer_with_groq(question, context):
|
120 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
121 |
api_key = os.environ.get("GROQ_API_KEY")
|
|
|
125 |
}
|
126 |
prompt = (
|
127 |
f"Customer asked: '{question}'\n\n"
|
128 |
+
f"Here is the relevant product or policy info to help:\n{context}\n\n"
|
129 |
+
f"Respond in a friendly and helpful tone as a toy shop support agent."
|
|
|
130 |
)
|
131 |
payload = {
|
132 |
"model": "llama3-8b-8192",
|
|
|
134 |
{
|
135 |
"role": "system",
|
136 |
"content": (
|
137 |
+
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
|
138 |
+
"Your goal is to politely answer customer questions, help them choose the right toys, "
|
139 |
+
"provide order or delivery information, explain return policies, and guide them through purchases."
|
|
|
|
|
140 |
)
|
141 |
},
|
142 |
{"role": "user", "content": prompt},
|
|
|
176 |
author="system", body=body
|
177 |
)
|
178 |
|
179 |
+
# --- Load Knowledge Base ---
|
180 |
def setup_knowledge_base():
|
181 |
folder_path = "docs"
|
182 |
all_text = ""
|
183 |
|
184 |
+
# Process PDFs
|
185 |
+
for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
|
186 |
+
pdf_path = os.path.join(folder_path, filename)
|
187 |
+
text, tables = extract_text_from_pdf(pdf_path)
|
188 |
+
all_text += clean_extracted_text(text) + "\n"
|
189 |
+
all_text += _format_tables_internal(tables) + "\n"
|
190 |
+
|
191 |
+
# Process CSVs
|
192 |
+
for filename in ["CustomerOrders.csv"]:
|
193 |
+
csv_path = os.path.join(folder_path, filename)
|
194 |
+
try:
|
195 |
+
with open(csv_path, newline='', encoding='utf-8') as csvfile:
|
196 |
+
reader = csv.DictReader(csvfile)
|
197 |
+
for row in reader:
|
198 |
+
line = f"Order ID: {row.get('OrderID')} | Customer Name: {row.get('CustomerName')} | Order Date: {row.get('OrderDate')} | ProductID: {row.get('ProductID')} | Date: {row.get('OrderDate')} | Quantity: {row.get('Quantity')} | UnitPrice(USD): {row.get('UnitPrice(USD)')} | TotalPrice(USD): {row.get('TotalPrice(USD)')} | ShippingAddress: {row.get('ShippingAddress')} | OrderStatus: {row.get('OrderStatus')}"
|
199 |
+
all_text += line + "\n"
|
200 |
+
except Exception as e:
|
201 |
+
print(f"β Error reading {filename}: {e}")
|
202 |
+
|
203 |
+
for filename in ["Products.csv"]:
|
204 |
+
csv_path = os.path.join(folder_path, filename)
|
205 |
+
try:
|
206 |
+
with open(csv_path, newline='', encoding='utf-8') as csvfile:
|
207 |
+
reader = csv.DictReader(csvfile)
|
208 |
+
for row in reader:
|
209 |
+
line = f"Product ID: {row.get('ProductID')} | Toy Name: {row.get('ToyName')} | Category: {row.get('Category')} | Price(USD): {row.get('Price(USD)')} | Stock Quantity: {row.get('StockQuantity')} | Description: {row.get('Description')}"
|
210 |
+
all_text += line + "\n"
|
211 |
+
except Exception as e:
|
212 |
+
print(f"β Error reading {filename}: {e}")
|
213 |
|
214 |
+
# Tokenization & chunking
|
215 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
216 |
chunks = chunk_text(all_text, tokenizer)
|
217 |
model = SentenceTransformer('all-mpnet-base-v2')
|
218 |
+
embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
|
219 |
dim = embeddings[0].shape[0]
|
220 |
index = faiss.IndexFlatL2(dim)
|
221 |
index.add(np.array(embeddings).astype('float32'))
|
|
|
275 |
# --- Streamlit UI ---
|
276 |
st.set_page_config(page_title="Quasa β Al-Powered WhatsApp Chatbot", layout="wide")
|
277 |
st.title("π± Quasa β Al-Powered WhatsApp Chatbot")
|
|
|
278 |
|
|
|
|
|
279 |
account_sid = st.secrets.get("TWILIO_SID")
|
280 |
auth_token = st.secrets.get("TWILIO_TOKEN")
|
281 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
|