Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
-
import
|
|
|
3 |
import PyPDF2
|
4 |
from pdfminer.high_level import extract_text
|
5 |
from transformers import AutoTokenizer
|
@@ -7,9 +8,9 @@ from sentence_transformers import SentenceTransformer
|
|
7 |
import faiss
|
8 |
import numpy as np
|
9 |
from groq import Groq
|
10 |
-
import docx
|
11 |
|
12 |
-
# --- Helper
|
13 |
|
14 |
def extract_text_from_pdf(pdf_path):
|
15 |
try:
|
@@ -23,7 +24,7 @@ def extract_text_from_pdf(pdf_path):
|
|
23 |
text += page_text
|
24 |
return text
|
25 |
except Exception as e:
|
26 |
-
|
27 |
return extract_text(pdf_path)
|
28 |
|
29 |
def extract_text_from_docx(docx_path):
|
@@ -34,7 +35,7 @@ def extract_text_from_docx(docx_path):
|
|
34 |
full_text.append(para.text)
|
35 |
return '\n'.join(full_text)
|
36 |
except Exception as e:
|
37 |
-
|
38 |
return ""
|
39 |
|
40 |
def chunk_text_with_tokenizer(text, tokenizer, chunk_size=150, chunk_overlap=30):
|
@@ -57,7 +58,7 @@ def retrieve_relevant_chunks(question, index, embeddings_model, text_chunks, k=3
|
|
57 |
|
58 |
def generate_answer_with_groq(question, context):
|
59 |
prompt = f"Based on the following context, answer the question: '{question}'\n\nContext:\n{context}"
|
60 |
-
model_name = "llama-3.3-70b-versatile" # Adjust
|
61 |
try:
|
62 |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
63 |
response = groq_client.chat.completions.create(
|
@@ -69,49 +70,34 @@ def generate_answer_with_groq(question, context):
|
|
69 |
)
|
70 |
return response.choices[0].message.content
|
71 |
except Exception as e:
|
72 |
-
|
73 |
return "I'm sorry, I couldn't generate an answer at this time."
|
74 |
|
75 |
-
# ---
|
76 |
|
77 |
-
st.set_page_config(page_title="SMEHelpBot π€", layout="wide")
|
78 |
-
st.title("π€ SMEHelpBot β Your AI Assistant for Small Businesses")
|
79 |
-
|
80 |
-
# GROQ API key check
|
81 |
-
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
82 |
-
if not GROQ_API_KEY:
|
83 |
-
st.error("β Please set your GROQ_API_KEY in environment or .streamlit/secrets.toml")
|
84 |
-
st.stop()
|
85 |
-
|
86 |
-
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
87 |
-
|
88 |
-
# Load and process all docs at startup
|
89 |
-
@st.cache_data(show_spinner=True)
|
90 |
def load_and_prepare_docs(folder_path="docs"):
|
|
|
91 |
all_text = ""
|
92 |
if not os.path.exists(folder_path):
|
93 |
-
|
94 |
return None, None, None
|
95 |
|
96 |
-
# Collect all pdf and docx files
|
97 |
files = [f for f in os.listdir(folder_path) if f.lower().endswith(('.pdf', '.docx', '.doc'))]
|
98 |
if not files:
|
99 |
-
|
100 |
return None, None, None
|
101 |
|
102 |
for file in files:
|
103 |
path = os.path.join(folder_path, file)
|
104 |
if file.lower().endswith('.pdf'):
|
105 |
text = extract_text_from_pdf(path)
|
106 |
-
elif file.lower().endswith(('.docx', '.doc')):
|
107 |
-
text = extract_text_from_docx(path)
|
108 |
else:
|
109 |
-
text =
|
110 |
if text:
|
111 |
all_text += text + "\n\n"
|
112 |
|
113 |
if not all_text.strip():
|
114 |
-
|
115 |
return None, None, None
|
116 |
|
117 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
@@ -121,26 +107,54 @@ def load_and_prepare_docs(folder_path="docs"):
|
|
121 |
all_embeddings = embedding_model.encode(text_chunks) if text_chunks else None
|
122 |
|
123 |
if all_embeddings is None or len(all_embeddings) == 0:
|
124 |
-
|
125 |
return None, None, None
|
126 |
|
127 |
embedding_dim = all_embeddings[0].shape[0]
|
128 |
index = faiss.IndexFlatL2(embedding_dim)
|
129 |
index.add(np.array(all_embeddings))
|
130 |
|
|
|
131 |
return index, embedding_model, text_chunks
|
132 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
133 |
index, embedding_model, text_chunks = load_and_prepare_docs()
|
134 |
|
135 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
-
if st.button("Get Answer") and user_question:
|
138 |
if index is None or embedding_model is None or text_chunks is None:
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import os
|
2 |
+
from flask import Flask, request
|
3 |
+
from twilio.twiml.messaging_response import MessagingResponse
|
4 |
import PyPDF2
|
5 |
from pdfminer.high_level import extract_text
|
6 |
from transformers import AutoTokenizer
|
|
|
8 |
import faiss
|
9 |
import numpy as np
|
10 |
from groq import Groq
|
11 |
+
import docx
|
12 |
|
13 |
+
# --- Helper functions from your code ---
|
14 |
|
15 |
def extract_text_from_pdf(pdf_path):
|
16 |
try:
|
|
|
24 |
text += page_text
|
25 |
return text
|
26 |
except Exception as e:
|
27 |
+
print(f"PyPDF2 failed with error: {e}. Trying pdfminer.six...")
|
28 |
return extract_text(pdf_path)
|
29 |
|
30 |
def extract_text_from_docx(docx_path):
|
|
|
35 |
full_text.append(para.text)
|
36 |
return '\n'.join(full_text)
|
37 |
except Exception as e:
|
38 |
+
print(f"Failed to read DOCX {docx_path}: {e}")
|
39 |
return ""
|
40 |
|
41 |
def chunk_text_with_tokenizer(text, tokenizer, chunk_size=150, chunk_overlap=30):
|
|
|
58 |
|
59 |
def generate_answer_with_groq(question, context):
|
60 |
prompt = f"Based on the following context, answer the question: '{question}'\n\nContext:\n{context}"
|
61 |
+
model_name = "llama-3.3-70b-versatile" # Adjust if needed
|
62 |
try:
|
63 |
groq_client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
|
64 |
response = groq_client.chat.completions.create(
|
|
|
70 |
)
|
71 |
return response.choices[0].message.content
|
72 |
except Exception as e:
|
73 |
+
print(f"Error generating answer with Groq API: {e}")
|
74 |
return "I'm sorry, I couldn't generate an answer at this time."
|
75 |
|
76 |
+
# --- Load and prepare docs on startup ---
|
77 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
def load_and_prepare_docs(folder_path="docs"):
|
79 |
+
print("Loading documents from", folder_path)
|
80 |
all_text = ""
|
81 |
if not os.path.exists(folder_path):
|
82 |
+
print(f"Folder '{folder_path}' does not exist!")
|
83 |
return None, None, None
|
84 |
|
|
|
85 |
files = [f for f in os.listdir(folder_path) if f.lower().endswith(('.pdf', '.docx', '.doc'))]
|
86 |
if not files:
|
87 |
+
print(f"No PDF or DOCX files found in folder '{folder_path}'.")
|
88 |
return None, None, None
|
89 |
|
90 |
for file in files:
|
91 |
path = os.path.join(folder_path, file)
|
92 |
if file.lower().endswith('.pdf'):
|
93 |
text = extract_text_from_pdf(path)
|
|
|
|
|
94 |
else:
|
95 |
+
text = extract_text_from_docx(path)
|
96 |
if text:
|
97 |
all_text += text + "\n\n"
|
98 |
|
99 |
if not all_text.strip():
|
100 |
+
print("No text extracted from documents.")
|
101 |
return None, None, None
|
102 |
|
103 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
|
|
107 |
all_embeddings = embedding_model.encode(text_chunks) if text_chunks else None
|
108 |
|
109 |
if all_embeddings is None or len(all_embeddings) == 0:
|
110 |
+
print("No text chunks found to create embeddings.")
|
111 |
return None, None, None
|
112 |
|
113 |
embedding_dim = all_embeddings[0].shape[0]
|
114 |
index = faiss.IndexFlatL2(embedding_dim)
|
115 |
index.add(np.array(all_embeddings))
|
116 |
|
117 |
+
print("Documents loaded and FAISS index created.")
|
118 |
return index, embedding_model, text_chunks
|
119 |
|
120 |
+
# --- Flask app and WhatsApp webhook ---
|
121 |
+
|
122 |
+
from flask_cors import CORS
|
123 |
+
app = Flask(__name__)
|
124 |
+
CORS(app) # Optional, if you call API from other domains
|
125 |
+
|
126 |
+
# Load documents once at start
|
127 |
index, embedding_model, text_chunks = load_and_prepare_docs()
|
128 |
|
129 |
+
@app.route("/whatsapp", methods=["POST"])
|
130 |
+
def whatsapp_reply():
|
131 |
+
incoming_msg = request.values.get('Body', '').strip()
|
132 |
+
from_number = request.values.get('From', '')
|
133 |
+
print(f"Incoming message from {from_number}: {incoming_msg}")
|
134 |
+
|
135 |
+
resp = MessagingResponse()
|
136 |
+
msg = resp.message()
|
137 |
+
|
138 |
+
if not incoming_msg:
|
139 |
+
msg.body("Please send a question.")
|
140 |
+
return str(resp)
|
141 |
|
|
|
142 |
if index is None or embedding_model is None or text_chunks is None:
|
143 |
+
msg.body("Sorry, the knowledge base is not ready. Please try again later.")
|
144 |
+
return str(resp)
|
145 |
+
|
146 |
+
# Retrieve context and generate answer
|
147 |
+
relevant_chunks = retrieve_relevant_chunks(incoming_msg, index, embedding_model, text_chunks)
|
148 |
+
context = "\n\n".join(relevant_chunks)
|
149 |
+
answer = generate_answer_with_groq(incoming_msg, context)
|
150 |
+
|
151 |
+
msg.body(answer)
|
152 |
+
return str(resp)
|
153 |
+
|
154 |
+
if __name__ == "__main__":
|
155 |
+
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
156 |
+
if not GROQ_API_KEY:
|
157 |
+
print("Please set the GROQ_API_KEY environment variable before running.")
|
158 |
+
exit(1)
|
159 |
+
print("Starting WhatsApp SMEHelpBot server...")
|
160 |
+
app.run(host="0.0.0.0", port=int(os.environ.get("PORT", 5000)))
|