Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -13,102 +13,108 @@ import requests
|
|
13 |
from io import StringIO
|
14 |
from pdfminer.high_level import extract_text_to_fp
|
15 |
from pdfminer.layout import LAParams
|
16 |
-
from twilio.base.exceptions import TwilioRestException
|
17 |
import pdfplumber
|
18 |
import datetime
|
19 |
import csv
|
20 |
-
import json
|
21 |
-
import re
|
22 |
|
23 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
|
|
24 |
os.environ["PYTORCH_JIT"] = "0"
|
25 |
|
26 |
-
#
|
27 |
def _extract_tables_from_page(page):
|
|
|
|
|
28 |
tables = page.extract_tables()
|
|
|
|
|
|
|
29 |
formatted_tables = []
|
30 |
for table in tables:
|
31 |
formatted_table = []
|
32 |
for row in table:
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
35 |
formatted_tables.append(formatted_table)
|
36 |
return formatted_tables
|
37 |
-
|
38 |
def extract_text_from_pdf(pdf_path):
|
39 |
text_output = StringIO()
|
40 |
all_tables = []
|
41 |
try:
|
42 |
with pdfplumber.open(pdf_path) as pdf:
|
43 |
for page in pdf.pages:
|
44 |
-
|
|
|
|
|
|
|
|
|
45 |
text = page.extract_text()
|
46 |
if text:
|
47 |
text_output.write(text + "\n\n")
|
48 |
except Exception as e:
|
49 |
-
print(f"pdfplumber
|
|
|
50 |
with open(pdf_path, 'rb') as file:
|
51 |
-
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
|
52 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
53 |
|
54 |
def _format_tables_internal(tables):
|
|
|
|
|
55 |
formatted_tables_str = []
|
56 |
for table in tables:
|
|
|
57 |
with StringIO() as csvfile:
|
58 |
-
|
59 |
-
|
60 |
formatted_tables_str.append(csvfile.getvalue())
|
61 |
return "\n\n".join(formatted_tables_str)
|
62 |
|
63 |
-
|
64 |
-
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
|
65 |
-
|
66 |
def extract_text_from_docx(docx_path):
|
67 |
try:
|
68 |
doc = docx.Document(docx_path)
|
69 |
return '\n'.join(para.text for para in doc.paragraphs)
|
70 |
-
except:
|
71 |
return ""
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
with open(json_path, 'r', encoding='utf-8') as f:
|
76 |
-
data = json.load(f)
|
77 |
-
if isinstance(data, dict):
|
78 |
-
# Flatten dictionary values (avoiding nested structures as strings)
|
79 |
-
return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
|
80 |
-
elif isinstance(data, list):
|
81 |
-
# Flatten list of dictionaries
|
82 |
-
all_items = []
|
83 |
-
for item in data:
|
84 |
-
if isinstance(item, dict):
|
85 |
-
all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
|
86 |
-
return "\n\n".join(all_items)
|
87 |
-
else:
|
88 |
-
return json.dumps(data, ensure_ascii=False, indent=2)
|
89 |
-
except Exception as e:
|
90 |
-
print(f"JSON read error: {e}")
|
91 |
-
return ""
|
92 |
-
|
93 |
-
# ---------------- Chunking ----------------
|
94 |
-
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
|
95 |
tokens = tokenizer.tokenize(text)
|
96 |
chunks = []
|
97 |
start = 0
|
98 |
while start < len(tokens):
|
99 |
end = min(start + chunk_size, len(tokens))
|
100 |
-
|
101 |
-
|
102 |
-
|
|
|
|
|
103 |
start += chunk_size - chunk_overlap
|
104 |
return chunks
|
105 |
|
106 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
107 |
-
|
108 |
-
D, I = index.search(np.array([
|
109 |
return [text_chunks[i] for i in I[0]]
|
110 |
|
111 |
-
#
|
112 |
def generate_answer_with_groq(question, context):
|
113 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
114 |
api_key = os.environ.get("GROQ_API_KEY")
|
@@ -118,9 +124,8 @@ def generate_answer_with_groq(question, context):
|
|
118 |
}
|
119 |
prompt = (
|
120 |
f"Customer asked: '{question}'\n\n"
|
121 |
-
f"Here is the relevant
|
122 |
-
f"Respond in a friendly and helpful tone as a toy shop support agent
|
123 |
-
f"addressing the customer by their name if it's available in the context."
|
124 |
)
|
125 |
payload = {
|
126 |
"model": "llama3-8b-8192",
|
@@ -128,11 +133,9 @@ def generate_answer_with_groq(question, context):
|
|
128 |
{
|
129 |
"role": "system",
|
130 |
"content": (
|
131 |
-
"You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
|
132 |
-
"
|
133 |
-
"
|
134 |
-
"and address them directly. If the context contains order details and status, "
|
135 |
-
"include that information in your response."
|
136 |
)
|
137 |
},
|
138 |
{"role": "user", "content": prompt},
|
@@ -144,7 +147,7 @@ def generate_answer_with_groq(question, context):
|
|
144 |
response.raise_for_status()
|
145 |
return response.json()['choices'][0]['message']['content'].strip()
|
146 |
|
147 |
-
#
|
148 |
def fetch_latest_incoming_message(client, conversation_sid):
|
149 |
try:
|
150 |
messages = client.conversations.v1.conversations(conversation_sid).messages.list()
|
@@ -157,7 +160,14 @@ def fetch_latest_incoming_message(client, conversation_sid):
|
|
157 |
"timestamp": msg.date_created,
|
158 |
}
|
159 |
except TwilioRestException as e:
|
160 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
161 |
return None
|
162 |
|
163 |
def send_twilio_message(client, conversation_sid, body):
|
@@ -165,87 +175,121 @@ def send_twilio_message(client, conversation_sid, body):
|
|
165 |
author="system", body=body
|
166 |
)
|
167 |
|
168 |
-
#
|
169 |
def setup_knowledge_base():
|
170 |
folder_path = "docs"
|
171 |
all_text = ""
|
172 |
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
all_text += line + "\n"
|
192 |
-
except Exception as e:
|
193 |
-
print(f"CSV read error: {e}")
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
196 |
chunks = chunk_text(all_text, tokenizer)
|
197 |
model = SentenceTransformer('all-mpnet-base-v2')
|
198 |
-
embeddings = model.encode(chunks, show_progress_bar=False)
|
199 |
dim = embeddings[0].shape[0]
|
200 |
index = faiss.IndexFlatL2(dim)
|
201 |
index.add(np.array(embeddings).astype('float32'))
|
202 |
return index, model, chunks
|
203 |
|
204 |
-
|
|
|
|
|
205 |
def start_conversation_monitor(client, index, embed_model, text_chunks):
|
206 |
processed_convos = set()
|
207 |
last_processed_timestamp = {}
|
208 |
|
209 |
-
def
|
210 |
while True:
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
|
216 |
last_processed_timestamp[convo_sid] = msg_time
|
217 |
question = latest_msg["body"]
|
218 |
sender = latest_msg["author"]
|
219 |
-
print(f"
|
220 |
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
|
221 |
answer = generate_answer_with_groq(question, context)
|
222 |
send_twilio_message(client, convo_sid, answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
time.sleep(5)
|
224 |
|
225 |
-
#
|
226 |
-
|
227 |
-
for convo in conversations:
|
228 |
-
if convo.date_created > APP_START_TIME:
|
229 |
-
if convo.sid not in processed_convos:
|
230 |
-
processed_convos.add(convo.sid)
|
231 |
-
threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()
|
232 |
|
233 |
|
234 |
-
# ---------------- Main Entry ----------------
|
235 |
-
if __name__ == "__main__":
|
236 |
-
st.title("π€ ToyBot WhatsApp Assistant")
|
237 |
-
st.write("Initializing knowledge base...")
|
238 |
|
239 |
-
|
|
|
|
|
240 |
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
from io import StringIO
|
14 |
from pdfminer.high_level import extract_text_to_fp
|
15 |
from pdfminer.layout import LAParams
|
16 |
+
from twilio.base.exceptions import TwilioRestException # Add this at the top
|
17 |
import pdfplumber
|
18 |
import datetime
|
19 |
import csv
|
|
|
|
|
20 |
|
21 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
22 |
+
|
23 |
os.environ["PYTORCH_JIT"] = "0"
|
24 |
|
25 |
+
# --- PDF Extraction ---
|
26 |
def _extract_tables_from_page(page):
|
27 |
+
"""Extracts tables from a single page of a PDF."""
|
28 |
+
|
29 |
tables = page.extract_tables()
|
30 |
+
if not tables:
|
31 |
+
return []
|
32 |
+
|
33 |
formatted_tables = []
|
34 |
for table in tables:
|
35 |
formatted_table = []
|
36 |
for row in table:
|
37 |
+
if row: # Filter out empty rows
|
38 |
+
formatted_row = [cell if cell is not None else "" for cell in row] # Replace None with ""
|
39 |
+
formatted_table.append(formatted_row)
|
40 |
+
else:
|
41 |
+
formatted_table.append([""]) # Append an empty row if the row is None
|
42 |
formatted_tables.append(formatted_table)
|
43 |
return formatted_tables
|
44 |
+
|
45 |
def extract_text_from_pdf(pdf_path):
|
46 |
text_output = StringIO()
|
47 |
all_tables = []
|
48 |
try:
|
49 |
with pdfplumber.open(pdf_path) as pdf:
|
50 |
for page in pdf.pages:
|
51 |
+
# Extract tables
|
52 |
+
page_tables = _extract_tables_from_page(page)
|
53 |
+
if page_tables:
|
54 |
+
all_tables.extend(page_tables)
|
55 |
+
# Extract text
|
56 |
text = page.extract_text()
|
57 |
if text:
|
58 |
text_output.write(text + "\n\n")
|
59 |
except Exception as e:
|
60 |
+
print(f"Error extracting with pdfplumber: {e}")
|
61 |
+
# Fallback to pdfminer if pdfplumber fails
|
62 |
with open(pdf_path, 'rb') as file:
|
63 |
+
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
|
64 |
+
extracted_text = text_output.getvalue()
|
65 |
+
return extracted_text, all_tables # Return text and list of tables
|
66 |
+
|
67 |
+
def clean_extracted_text(text):
|
68 |
+
lines = text.splitlines()
|
69 |
+
cleaned = []
|
70 |
+
for line in lines:
|
71 |
+
line = line.strip()
|
72 |
+
if line:
|
73 |
+
line = ' '.join(line.split())
|
74 |
+
cleaned.append(line)
|
75 |
+
return '\n'.join(cleaned)
|
76 |
|
77 |
def _format_tables_internal(tables):
|
78 |
+
"""Formats extracted tables into a string representation."""
|
79 |
+
|
80 |
formatted_tables_str = []
|
81 |
for table in tables:
|
82 |
+
# Use csv writer to handle commas and quotes correctly
|
83 |
with StringIO() as csvfile:
|
84 |
+
csvwriter = csv.writer(csvfile)
|
85 |
+
csvwriter.writerows(table)
|
86 |
formatted_tables_str.append(csvfile.getvalue())
|
87 |
return "\n\n".join(formatted_tables_str)
|
88 |
|
89 |
+
# --- DOCX Extraction ---
|
|
|
|
|
90 |
def extract_text_from_docx(docx_path):
|
91 |
try:
|
92 |
doc = docx.Document(docx_path)
|
93 |
return '\n'.join(para.text for para in doc.paragraphs)
|
94 |
+
except Exception:
|
95 |
return ""
|
96 |
|
97 |
+
# --- Chunking ---
|
98 |
+
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
99 |
tokens = tokenizer.tokenize(text)
|
100 |
chunks = []
|
101 |
start = 0
|
102 |
while start < len(tokens):
|
103 |
end = min(start + chunk_size, len(tokens))
|
104 |
+
chunk_tokens = tokens[start:end]
|
105 |
+
chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
|
106 |
+
chunks.append(chunk_text)
|
107 |
+
if end == len(tokens):
|
108 |
+
break
|
109 |
start += chunk_size - chunk_overlap
|
110 |
return chunks
|
111 |
|
112 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
113 |
+
question_embedding = embed_model.encode(question)
|
114 |
+
D, I = index.search(np.array([question_embedding]), k)
|
115 |
return [text_chunks[i] for i in I[0]]
|
116 |
|
117 |
+
# --- Groq Answer Generator ---
|
118 |
def generate_answer_with_groq(question, context):
|
119 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
120 |
api_key = os.environ.get("GROQ_API_KEY")
|
|
|
124 |
}
|
125 |
prompt = (
|
126 |
f"Customer asked: '{question}'\n\n"
|
127 |
+
f"Here is the relevant product or policy info to help:\n{context}\n\n"
|
128 |
+
f"Respond in a friendly and helpful tone as a toy shop support agent."
|
|
|
129 |
)
|
130 |
payload = {
|
131 |
"model": "llama3-8b-8192",
|
|
|
133 |
{
|
134 |
"role": "system",
|
135 |
"content": (
|
136 |
+
"You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
|
137 |
+
"Your goal is to politely answer customer questions, help them choose the right toys, "
|
138 |
+
"provide order or delivery information, explain return policies, and guide them through purchases."
|
|
|
|
|
139 |
)
|
140 |
},
|
141 |
{"role": "user", "content": prompt},
|
|
|
147 |
response.raise_for_status()
|
148 |
return response.json()['choices'][0]['message']['content'].strip()
|
149 |
|
150 |
+
# --- Twilio Functions ---
|
151 |
def fetch_latest_incoming_message(client, conversation_sid):
|
152 |
try:
|
153 |
messages = client.conversations.v1.conversations(conversation_sid).messages.list()
|
|
|
160 |
"timestamp": msg.date_created,
|
161 |
}
|
162 |
except TwilioRestException as e:
|
163 |
+
if e.status == 404:
|
164 |
+
print(f"Conversation {conversation_sid} not found, skipping...")
|
165 |
+
else:
|
166 |
+
print(f"Twilio error fetching messages for {conversation_sid}:", e)
|
167 |
+
except Exception as e:
|
168 |
+
#print(f"Unexpected error in fetch_latest_incoming_message for {conversation_sid}:", e)
|
169 |
+
pass
|
170 |
+
|
171 |
return None
|
172 |
|
173 |
def send_twilio_message(client, conversation_sid, body):
|
|
|
175 |
author="system", body=body
|
176 |
)
|
177 |
|
178 |
+
# --- Load Knowledge Base ---
|
179 |
def setup_knowledge_base():
|
180 |
folder_path = "docs"
|
181 |
all_text = ""
|
182 |
|
183 |
+
# Process PDFs
|
184 |
+
for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
|
185 |
+
pdf_path = os.path.join(folder_path, filename)
|
186 |
+
text, tables = extract_text_from_pdf(pdf_path)
|
187 |
+
all_text += clean_extracted_text(text) + "\n"
|
188 |
+
all_text += _format_tables_internal(tables) + "\n"
|
189 |
+
|
190 |
+
# Process CSVs
|
191 |
+
for filename in ["CustomerOrders.csv"]:
|
192 |
+
csv_path = os.path.join(folder_path, filename)
|
193 |
+
try:
|
194 |
+
with open(csv_path, newline='', encoding='utf-8') as csvfile:
|
195 |
+
reader = csv.DictReader(csvfile)
|
196 |
+
for row in reader:
|
197 |
+
line = f"Order ID: {row.get('OrderID')} | Customer Name: {row.get('CustomerName')} | Order Date: {row.get('OrderDate')} | ProductID: {row.get('ProductID')} | Date: {row.get('OrderDate')} | Quantity: {row.get('Quantity')} | UnitPrice(USD): {row.get('UnitPrice(USD)')} | TotalPrice(USD): {row.get('TotalPrice(USD)')} | ShippingAddress: {row.get('ShippingAddress')} | OrderStatus: {row.get('OrderStatus')}"
|
198 |
+
all_text += line + "\n"
|
199 |
+
except Exception as e:
|
200 |
+
print(f"β Error reading {filename}: {e}")
|
|
|
|
|
|
|
201 |
|
202 |
+
for filename in ["Products.csv"]:
|
203 |
+
csv_path = os.path.join(folder_path, filename)
|
204 |
+
try:
|
205 |
+
with open(csv_path, newline='', encoding='utf-8') as csvfile:
|
206 |
+
reader = csv.DictReader(csvfile)
|
207 |
+
for row in reader:
|
208 |
+
line = f"Product ID: {row.get('ProductID')} | Toy Name: {row.get('ToyName')} | Category: {row.get('Category')} | Price(USD): {row.get('Price(USD)')} | Stock Quantity: {row.get('StockQuantity')} | Description: {row.get('Description')}"
|
209 |
+
all_text += line + "\n"
|
210 |
+
except Exception as e:
|
211 |
+
print(f"β Error reading {filename}: {e}")
|
212 |
+
|
213 |
+
# Tokenization & chunking
|
214 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
215 |
chunks = chunk_text(all_text, tokenizer)
|
216 |
model = SentenceTransformer('all-mpnet-base-v2')
|
217 |
+
embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
|
218 |
dim = embeddings[0].shape[0]
|
219 |
index = faiss.IndexFlatL2(dim)
|
220 |
index.add(np.array(embeddings).astype('float32'))
|
221 |
return index, model, chunks
|
222 |
|
223 |
+
|
224 |
+
|
225 |
+
# --- Monitor Conversations ---
|
226 |
def start_conversation_monitor(client, index, embed_model, text_chunks):
|
227 |
processed_convos = set()
|
228 |
last_processed_timestamp = {}
|
229 |
|
230 |
+
def poll_conversation(convo_sid):
|
231 |
while True:
|
232 |
+
try:
|
233 |
+
latest_msg = fetch_latest_incoming_message(client, convo_sid)
|
234 |
+
if latest_msg:
|
235 |
+
msg_time = latest_msg["timestamp"]
|
236 |
if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
|
237 |
last_processed_timestamp[convo_sid] = msg_time
|
238 |
question = latest_msg["body"]
|
239 |
sender = latest_msg["author"]
|
240 |
+
print(f"\nπ₯ New message from {sender} in {convo_sid}: {question}")
|
241 |
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
|
242 |
answer = generate_answer_with_groq(question, context)
|
243 |
send_twilio_message(client, convo_sid, answer)
|
244 |
+
print(f"π€ Replied to {sender}: {answer}")
|
245 |
+
time.sleep(3)
|
246 |
+
except Exception as e:
|
247 |
+
print(f"β Error in convo {convo_sid} polling:", e)
|
248 |
+
time.sleep(5)
|
249 |
+
|
250 |
+
def poll_new_conversations():
|
251 |
+
print("β‘οΈ Monitoring for new WhatsApp conversations...")
|
252 |
+
while True:
|
253 |
+
try:
|
254 |
+
conversations = client.conversations.v1.conversations.list(limit=20)
|
255 |
+
for convo in conversations:
|
256 |
+
convo_full = client.conversations.v1.conversations(convo.sid).fetch()
|
257 |
+
if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
|
258 |
+
participants = client.conversations.v1.conversations(convo.sid).participants.list()
|
259 |
+
for p in participants:
|
260 |
+
address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
|
261 |
+
if address.startswith("whatsapp:"):
|
262 |
+
print(f"π New WhatsApp convo found: {convo.sid}")
|
263 |
+
processed_convos.add(convo.sid)
|
264 |
+
threading.Thread(target=poll_conversation, args=(convo.sid,), daemon=True).start()
|
265 |
+
except Exception as e:
|
266 |
+
print("β Error polling conversations:", e)
|
267 |
time.sleep(5)
|
268 |
|
269 |
+
# β
Launch conversation polling monitor
|
270 |
+
threading.Thread(target=poll_new_conversations, daemon=True).start()
|
|
|
|
|
|
|
|
|
|
|
271 |
|
272 |
|
|
|
|
|
|
|
|
|
273 |
|
274 |
+
# --- Streamlit UI ---
|
275 |
+
st.set_page_config(page_title="Quasa β A Smart WhatsApp Chatbot", layout="wide")
|
276 |
+
st.title("π± Quasa β A Smart WhatsApp Chatbot")
|
277 |
|
278 |
+
account_sid = st.secrets.get("TWILIO_SID")
|
279 |
+
auth_token = st.secrets.get("TWILIO_TOKEN")
|
280 |
+
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
|
281 |
+
|
282 |
+
if not all([account_sid, auth_token, GROQ_API_KEY]):
|
283 |
+
st.warning("β οΈ Provide all credentials below:")
|
284 |
+
account_sid = st.text_input("Twilio SID", value=account_sid or "")
|
285 |
+
auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
|
286 |
+
GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
|
287 |
+
|
288 |
+
if all([account_sid, auth_token, GROQ_API_KEY]):
|
289 |
+
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
290 |
+
client = Client(account_sid, auth_token)
|
291 |
+
|
292 |
+
st.success("π’ Monitoring new WhatsApp conversations...")
|
293 |
+
index, model, chunks = setup_knowledge_base()
|
294 |
+
threading.Thread(target=start_conversation_monitor, args=(client, index, model, chunks), daemon=True).start()
|
295 |
+
st.info("β³ Waiting for new messages...")
|