masadonline commited on
Commit
78a0505
Β·
verified Β·
1 Parent(s): a66595a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +152 -108
app.py CHANGED
@@ -13,102 +13,108 @@ import requests
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
- from twilio.base.exceptions import TwilioRestException
17
  import pdfplumber
18
  import datetime
19
  import csv
20
- import json
21
- import re
22
 
23
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
 
24
  os.environ["PYTORCH_JIT"] = "0"
25
 
26
- # ---------------- PDF & DOCX & JSON Extraction ----------------
27
  def _extract_tables_from_page(page):
 
 
28
  tables = page.extract_tables()
 
 
 
29
  formatted_tables = []
30
  for table in tables:
31
  formatted_table = []
32
  for row in table:
33
- formatted_row = [cell if cell is not None else "" for cell in row]
34
- formatted_table.append(formatted_row)
 
 
 
35
  formatted_tables.append(formatted_table)
36
  return formatted_tables
37
-
38
  def extract_text_from_pdf(pdf_path):
39
  text_output = StringIO()
40
  all_tables = []
41
  try:
42
  with pdfplumber.open(pdf_path) as pdf:
43
  for page in pdf.pages:
44
- all_tables.extend(_extract_tables_from_page(page))
 
 
 
 
45
  text = page.extract_text()
46
  if text:
47
  text_output.write(text + "\n\n")
48
  except Exception as e:
49
- print(f"pdfplumber error: {e}")
 
50
  with open(pdf_path, 'rb') as file:
51
- extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
52
- return text_output.getvalue(), all_tables
 
 
 
 
 
 
 
 
 
 
 
53
 
54
  def _format_tables_internal(tables):
 
 
55
  formatted_tables_str = []
56
  for table in tables:
 
57
  with StringIO() as csvfile:
58
- writer = csv.writer(csvfile)
59
- writer.writerows(table)
60
  formatted_tables_str.append(csvfile.getvalue())
61
  return "\n\n".join(formatted_tables_str)
62
 
63
- def clean_extracted_text(text):
64
- return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
65
-
66
  def extract_text_from_docx(docx_path):
67
  try:
68
  doc = docx.Document(docx_path)
69
  return '\n'.join(para.text for para in doc.paragraphs)
70
- except:
71
  return ""
72
 
73
- def load_json_data(json_path):
74
- try:
75
- with open(json_path, 'r', encoding='utf-8') as f:
76
- data = json.load(f)
77
- if isinstance(data, dict):
78
- # Flatten dictionary values (avoiding nested structures as strings)
79
- return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
80
- elif isinstance(data, list):
81
- # Flatten list of dictionaries
82
- all_items = []
83
- for item in data:
84
- if isinstance(item, dict):
85
- all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
86
- return "\n\n".join(all_items)
87
- else:
88
- return json.dumps(data, ensure_ascii=False, indent=2)
89
- except Exception as e:
90
- print(f"JSON read error: {e}")
91
- return ""
92
-
93
- # ---------------- Chunking ----------------
94
- def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
95
  tokens = tokenizer.tokenize(text)
96
  chunks = []
97
  start = 0
98
  while start < len(tokens):
99
  end = min(start + chunk_size, len(tokens))
100
- chunk = tokens[start:end]
101
- chunks.append(tokenizer.convert_tokens_to_string(chunk))
102
- if end == len(tokens): break
 
 
103
  start += chunk_size - chunk_overlap
104
  return chunks
105
 
106
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
107
- q_embedding = embed_model.encode(question)
108
- D, I = index.search(np.array([q_embedding]), k)
109
  return [text_chunks[i] for i in I[0]]
110
 
111
- # ---------------- Groq Answer Generator ----------------
112
  def generate_answer_with_groq(question, context):
113
  url = "https://api.groq.com/openai/v1/chat/completions"
114
  api_key = os.environ.get("GROQ_API_KEY")
@@ -118,9 +124,8 @@ def generate_answer_with_groq(question, context):
118
  }
119
  prompt = (
120
  f"Customer asked: '{question}'\n\n"
121
- f"Here is the relevant information to help:\n{context}\n\n"
122
- f"Respond in a friendly and helpful tone as a toy shop support agent, "
123
- f"addressing the customer by their name if it's available in the context."
124
  )
125
  payload = {
126
  "model": "llama3-8b-8192",
@@ -128,11 +133,9 @@ def generate_answer_with_groq(question, context):
128
  {
129
  "role": "system",
130
  "content": (
131
- "You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
132
- "Help customers with toys, delivery, and returns in a helpful tone. "
133
- "When responding, try to find the customer's name in the provided context "
134
- "and address them directly. If the context contains order details and status, "
135
- "include that information in your response."
136
  )
137
  },
138
  {"role": "user", "content": prompt},
@@ -144,7 +147,7 @@ def generate_answer_with_groq(question, context):
144
  response.raise_for_status()
145
  return response.json()['choices'][0]['message']['content'].strip()
146
 
147
- # ---------------- Twilio Integration ----------------
148
  def fetch_latest_incoming_message(client, conversation_sid):
149
  try:
150
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
@@ -157,7 +160,14 @@ def fetch_latest_incoming_message(client, conversation_sid):
157
  "timestamp": msg.date_created,
158
  }
159
  except TwilioRestException as e:
160
- print(f"Twilio error: {e}")
 
 
 
 
 
 
 
161
  return None
162
 
163
  def send_twilio_message(client, conversation_sid, body):
@@ -165,87 +175,121 @@ def send_twilio_message(client, conversation_sid, body):
165
  author="system", body=body
166
  )
167
 
168
- # ---------------- Knowledge Base Setup ----------------
169
  def setup_knowledge_base():
170
  folder_path = "docs"
171
  all_text = ""
172
 
173
- for filename in os.listdir(folder_path):
174
- file_path = os.path.join(folder_path, filename)
175
- if filename.endswith(".pdf"):
176
- text, tables = extract_text_from_pdf(file_path)
177
- all_text += clean_extracted_text(text) + "\n"
178
- all_text += _format_tables_internal(tables) + "\n"
179
- elif filename.endswith(".docx"):
180
- text = extract_text_from_docx(file_path)
181
- all_text += clean_extracted_text(text) + "\n"
182
- elif filename.endswith(".json"):
183
- text = load_json_data(file_path)
184
- all_text += text + "\n"
185
- elif filename.endswith(".csv"):
186
- try:
187
- with open(file_path, newline='', encoding='utf-8') as csvfile:
188
- reader = csv.DictReader(csvfile)
189
- for row in reader:
190
- line = ' | '.join(f"{k}: {v}" for k, v in row.items())
191
- all_text += line + "\n"
192
- except Exception as e:
193
- print(f"CSV read error: {e}")
194
 
 
 
 
 
 
 
 
 
 
 
 
 
195
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
196
  chunks = chunk_text(all_text, tokenizer)
197
  model = SentenceTransformer('all-mpnet-base-v2')
198
- embeddings = model.encode(chunks, show_progress_bar=False)
199
  dim = embeddings[0].shape[0]
200
  index = faiss.IndexFlatL2(dim)
201
  index.add(np.array(embeddings).astype('float32'))
202
  return index, model, chunks
203
 
204
- # ---------------- Monitor Twilio Conversations ----------------
 
 
205
  def start_conversation_monitor(client, index, embed_model, text_chunks):
206
  processed_convos = set()
207
  last_processed_timestamp = {}
208
 
209
- def poll_convo(convo_sid):
210
  while True:
211
- latest_msg = fetch_latest_incoming_message(client, convo_sid)
212
- if latest_msg:
213
- msg_time = latest_msg["timestamp"]
214
- if msg_time > APP_START_TIME:
215
  if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
216
  last_processed_timestamp[convo_sid] = msg_time
217
  question = latest_msg["body"]
218
  sender = latest_msg["author"]
219
- print(f"πŸ“© New message from {sender}: {question}")
220
  context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
221
  answer = generate_answer_with_groq(question, context)
222
  send_twilio_message(client, convo_sid, answer)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
223
  time.sleep(5)
224
 
225
- # Filter only conversations created after app start
226
- conversations = client.conversations.v1.conversations.list()
227
- for convo in conversations:
228
- if convo.date_created > APP_START_TIME:
229
- if convo.sid not in processed_convos:
230
- processed_convos.add(convo.sid)
231
- threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()
232
 
233
 
234
- # ---------------- Main Entry ----------------
235
- if __name__ == "__main__":
236
- st.title("πŸ€– ToyBot WhatsApp Assistant")
237
- st.write("Initializing knowledge base...")
238
 
239
- index, model, chunks = setup_knowledge_base()
 
 
240
 
241
- st.success("Knowledge base loaded.")
242
- st.write("Waiting for WhatsApp messages...")
243
-
244
- account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
245
- auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
246
- if not account_sid or not auth_token:
247
- st.error("❌ Twilio credentials not set.")
248
- else:
249
- client = Client(account_sid, auth_token)
250
- start_conversation_monitor(client, index, model, chunks)
251
- st.info("βœ… Bot is now monitoring Twilio conversations.")
 
 
 
 
 
 
 
 
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
+ from twilio.base.exceptions import TwilioRestException # Add this at the top
17
  import pdfplumber
18
  import datetime
19
  import csv
 
 
20
 
21
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
22
+
23
  os.environ["PYTORCH_JIT"] = "0"
24
 
25
+ # --- PDF Extraction ---
26
  def _extract_tables_from_page(page):
27
+ """Extracts tables from a single page of a PDF."""
28
+
29
  tables = page.extract_tables()
30
+ if not tables:
31
+ return []
32
+
33
  formatted_tables = []
34
  for table in tables:
35
  formatted_table = []
36
  for row in table:
37
+ if row: # Filter out empty rows
38
+ formatted_row = [cell if cell is not None else "" for cell in row] # Replace None with ""
39
+ formatted_table.append(formatted_row)
40
+ else:
41
+ formatted_table.append([""]) # Append an empty row if the row is None
42
  formatted_tables.append(formatted_table)
43
  return formatted_tables
44
+
45
  def extract_text_from_pdf(pdf_path):
46
  text_output = StringIO()
47
  all_tables = []
48
  try:
49
  with pdfplumber.open(pdf_path) as pdf:
50
  for page in pdf.pages:
51
+ # Extract tables
52
+ page_tables = _extract_tables_from_page(page)
53
+ if page_tables:
54
+ all_tables.extend(page_tables)
55
+ # Extract text
56
  text = page.extract_text()
57
  if text:
58
  text_output.write(text + "\n\n")
59
  except Exception as e:
60
+ print(f"Error extracting with pdfplumber: {e}")
61
+ # Fallback to pdfminer if pdfplumber fails
62
  with open(pdf_path, 'rb') as file:
63
+ extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
64
+ extracted_text = text_output.getvalue()
65
+ return extracted_text, all_tables # Return text and list of tables
66
+
67
+ def clean_extracted_text(text):
68
+ lines = text.splitlines()
69
+ cleaned = []
70
+ for line in lines:
71
+ line = line.strip()
72
+ if line:
73
+ line = ' '.join(line.split())
74
+ cleaned.append(line)
75
+ return '\n'.join(cleaned)
76
 
77
  def _format_tables_internal(tables):
78
+ """Formats extracted tables into a string representation."""
79
+
80
  formatted_tables_str = []
81
  for table in tables:
82
+ # Use csv writer to handle commas and quotes correctly
83
  with StringIO() as csvfile:
84
+ csvwriter = csv.writer(csvfile)
85
+ csvwriter.writerows(table)
86
  formatted_tables_str.append(csvfile.getvalue())
87
  return "\n\n".join(formatted_tables_str)
88
 
89
+ # --- DOCX Extraction ---
 
 
90
  def extract_text_from_docx(docx_path):
91
  try:
92
  doc = docx.Document(docx_path)
93
  return '\n'.join(para.text for para in doc.paragraphs)
94
+ except Exception:
95
  return ""
96
 
97
+ # --- Chunking ---
98
+ def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  tokens = tokenizer.tokenize(text)
100
  chunks = []
101
  start = 0
102
  while start < len(tokens):
103
  end = min(start + chunk_size, len(tokens))
104
+ chunk_tokens = tokens[start:end]
105
+ chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
106
+ chunks.append(chunk_text)
107
+ if end == len(tokens):
108
+ break
109
  start += chunk_size - chunk_overlap
110
  return chunks
111
 
112
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
113
+ question_embedding = embed_model.encode(question)
114
+ D, I = index.search(np.array([question_embedding]), k)
115
  return [text_chunks[i] for i in I[0]]
116
 
117
+ # --- Groq Answer Generator ---
118
  def generate_answer_with_groq(question, context):
119
  url = "https://api.groq.com/openai/v1/chat/completions"
120
  api_key = os.environ.get("GROQ_API_KEY")
 
124
  }
125
  prompt = (
126
  f"Customer asked: '{question}'\n\n"
127
+ f"Here is the relevant product or policy info to help:\n{context}\n\n"
128
+ f"Respond in a friendly and helpful tone as a toy shop support agent."
 
129
  )
130
  payload = {
131
  "model": "llama3-8b-8192",
 
133
  {
134
  "role": "system",
135
  "content": (
136
+ "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
137
+ "Your goal is to politely answer customer questions, help them choose the right toys, "
138
+ "provide order or delivery information, explain return policies, and guide them through purchases."
 
 
139
  )
140
  },
141
  {"role": "user", "content": prompt},
 
147
  response.raise_for_status()
148
  return response.json()['choices'][0]['message']['content'].strip()
149
 
150
+ # --- Twilio Functions ---
151
  def fetch_latest_incoming_message(client, conversation_sid):
152
  try:
153
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
 
160
  "timestamp": msg.date_created,
161
  }
162
  except TwilioRestException as e:
163
+ if e.status == 404:
164
+ print(f"Conversation {conversation_sid} not found, skipping...")
165
+ else:
166
+ print(f"Twilio error fetching messages for {conversation_sid}:", e)
167
+ except Exception as e:
168
+ #print(f"Unexpected error in fetch_latest_incoming_message for {conversation_sid}:", e)
169
+ pass
170
+
171
  return None
172
 
173
  def send_twilio_message(client, conversation_sid, body):
 
175
  author="system", body=body
176
  )
177
 
178
+ # --- Load Knowledge Base ---
179
  def setup_knowledge_base():
180
  folder_path = "docs"
181
  all_text = ""
182
 
183
+ # Process PDFs
184
+ for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
185
+ pdf_path = os.path.join(folder_path, filename)
186
+ text, tables = extract_text_from_pdf(pdf_path)
187
+ all_text += clean_extracted_text(text) + "\n"
188
+ all_text += _format_tables_internal(tables) + "\n"
189
+
190
+ # Process CSVs
191
+ for filename in ["CustomerOrders.csv"]:
192
+ csv_path = os.path.join(folder_path, filename)
193
+ try:
194
+ with open(csv_path, newline='', encoding='utf-8') as csvfile:
195
+ reader = csv.DictReader(csvfile)
196
+ for row in reader:
197
+ line = f"Order ID: {row.get('OrderID')} | Customer Name: {row.get('CustomerName')} | Order Date: {row.get('OrderDate')} | ProductID: {row.get('ProductID')} | Date: {row.get('OrderDate')} | Quantity: {row.get('Quantity')} | UnitPrice(USD): {row.get('UnitPrice(USD)')} | TotalPrice(USD): {row.get('TotalPrice(USD)')} | ShippingAddress: {row.get('ShippingAddress')} | OrderStatus: {row.get('OrderStatus')}"
198
+ all_text += line + "\n"
199
+ except Exception as e:
200
+ print(f"❌ Error reading {filename}: {e}")
 
 
 
201
 
202
+ for filename in ["Products.csv"]:
203
+ csv_path = os.path.join(folder_path, filename)
204
+ try:
205
+ with open(csv_path, newline='', encoding='utf-8') as csvfile:
206
+ reader = csv.DictReader(csvfile)
207
+ for row in reader:
208
+ line = f"Product ID: {row.get('ProductID')} | Toy Name: {row.get('ToyName')} | Category: {row.get('Category')} | Price(USD): {row.get('Price(USD)')} | Stock Quantity: {row.get('StockQuantity')} | Description: {row.get('Description')}"
209
+ all_text += line + "\n"
210
+ except Exception as e:
211
+ print(f"❌ Error reading {filename}: {e}")
212
+
213
+ # Tokenization & chunking
214
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
215
  chunks = chunk_text(all_text, tokenizer)
216
  model = SentenceTransformer('all-mpnet-base-v2')
217
+ embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
218
  dim = embeddings[0].shape[0]
219
  index = faiss.IndexFlatL2(dim)
220
  index.add(np.array(embeddings).astype('float32'))
221
  return index, model, chunks
222
 
223
+
224
+
225
+ # --- Monitor Conversations ---
226
  def start_conversation_monitor(client, index, embed_model, text_chunks):
227
  processed_convos = set()
228
  last_processed_timestamp = {}
229
 
230
+ def poll_conversation(convo_sid):
231
  while True:
232
+ try:
233
+ latest_msg = fetch_latest_incoming_message(client, convo_sid)
234
+ if latest_msg:
235
+ msg_time = latest_msg["timestamp"]
236
  if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
237
  last_processed_timestamp[convo_sid] = msg_time
238
  question = latest_msg["body"]
239
  sender = latest_msg["author"]
240
+ print(f"\nπŸ“₯ New message from {sender} in {convo_sid}: {question}")
241
  context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
242
  answer = generate_answer_with_groq(question, context)
243
  send_twilio_message(client, convo_sid, answer)
244
+ print(f"πŸ“€ Replied to {sender}: {answer}")
245
+ time.sleep(3)
246
+ except Exception as e:
247
+ print(f"❌ Error in convo {convo_sid} polling:", e)
248
+ time.sleep(5)
249
+
250
+ def poll_new_conversations():
251
+ print("➑️ Monitoring for new WhatsApp conversations...")
252
+ while True:
253
+ try:
254
+ conversations = client.conversations.v1.conversations.list(limit=20)
255
+ for convo in conversations:
256
+ convo_full = client.conversations.v1.conversations(convo.sid).fetch()
257
+ if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
258
+ participants = client.conversations.v1.conversations(convo.sid).participants.list()
259
+ for p in participants:
260
+ address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
261
+ if address.startswith("whatsapp:"):
262
+ print(f"πŸ†• New WhatsApp convo found: {convo.sid}")
263
+ processed_convos.add(convo.sid)
264
+ threading.Thread(target=poll_conversation, args=(convo.sid,), daemon=True).start()
265
+ except Exception as e:
266
+ print("❌ Error polling conversations:", e)
267
  time.sleep(5)
268
 
269
+ # βœ… Launch conversation polling monitor
270
+ threading.Thread(target=poll_new_conversations, daemon=True).start()
 
 
 
 
 
271
 
272
 
 
 
 
 
273
 
274
+ # --- Streamlit UI ---
275
+ st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
276
+ st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")
277
 
278
+ account_sid = st.secrets.get("TWILIO_SID")
279
+ auth_token = st.secrets.get("TWILIO_TOKEN")
280
+ GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
281
+
282
+ if not all([account_sid, auth_token, GROQ_API_KEY]):
283
+ st.warning("⚠️ Provide all credentials below:")
284
+ account_sid = st.text_input("Twilio SID", value=account_sid or "")
285
+ auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
286
+ GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
287
+
288
+ if all([account_sid, auth_token, GROQ_API_KEY]):
289
+ os.environ["GROQ_API_KEY"] = GROQ_API_KEY
290
+ client = Client(account_sid, auth_token)
291
+
292
+ st.success("🟒 Monitoring new WhatsApp conversations...")
293
+ index, model, chunks = setup_knowledge_base()
294
+ threading.Thread(target=start_conversation_monitor, args=(client, index, model, chunks), daemon=True).start()
295
+ st.info("⏳ Waiting for new messages...")