Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,55 +5,60 @@ from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.chains import RetrievalQA
|
8 |
-
from langchain_groq import ChatGroq # β
Correct import
|
9 |
|
10 |
-
#
|
11 |
st.set_page_config(page_title="SMEHelpBot π€", layout="wide")
|
12 |
st.title("π€ SMEHelpBot β Your AI Assistant for Small Businesses")
|
13 |
|
14 |
-
# API key
|
15 |
-
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
|
|
|
|
|
|
|
|
16 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
17 |
|
18 |
# Upload PDF
|
19 |
uploaded_file = st.file_uploader("π Upload a PDF (e.g., SME policies, documents):", type=["pdf"])
|
20 |
-
user_question = st.text_input("π¬ Ask a question
|
21 |
|
22 |
if uploaded_file:
|
23 |
with open("temp.pdf", "wb") as f:
|
24 |
f.write(uploaded_file.read())
|
25 |
|
|
|
26 |
loader = PyPDFLoader("temp.pdf")
|
27 |
documents = loader.load()
|
28 |
|
29 |
-
# Split into chunks
|
30 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
31 |
chunks = splitter.split_documents(documents)
|
32 |
|
33 |
-
# Create
|
34 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
35 |
vectorstore = FAISS.from_documents(chunks, embeddings)
|
36 |
retriever = vectorstore.as_retriever()
|
37 |
|
38 |
-
# Groq LLaMA3
|
39 |
llm = ChatGroq(temperature=0.3, model_name="llama3-8b-8192")
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
llm=llm,
|
44 |
chain_type="stuff",
|
45 |
retriever=retriever,
|
46 |
return_source_documents=True
|
47 |
)
|
48 |
|
|
|
49 |
if user_question:
|
50 |
-
with st.spinner("
|
51 |
-
result =
|
52 |
-
st.success(
|
|
|
53 |
|
54 |
with st.expander("π Source Snippets"):
|
55 |
for i, doc in enumerate(result["source_documents"]):
|
56 |
st.markdown(f"**Source {i+1}:**\n{doc.page_content[:300]}...")
|
57 |
-
|
58 |
else:
|
59 |
-
st.info("Upload a PDF and
|
|
|
5 |
from langchain.vectorstores import FAISS
|
6 |
from langchain.embeddings import HuggingFaceEmbeddings
|
7 |
from langchain.chains import RetrievalQA
|
8 |
+
from langchain_groq import ChatGroq # β
Correct import
|
9 |
|
10 |
+
# Set up Streamlit UI
|
11 |
st.set_page_config(page_title="SMEHelpBot π€", layout="wide")
|
12 |
st.title("π€ SMEHelpBot β Your AI Assistant for Small Businesses")
|
13 |
|
14 |
+
# Set Groq API key (use .streamlit/secrets.toml or environment variable)
|
15 |
+
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
16 |
+
if not GROQ_API_KEY:
|
17 |
+
st.error("β Please set your GROQ_API_KEY in environment or .streamlit/secrets.toml")
|
18 |
+
st.stop()
|
19 |
+
|
20 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
21 |
|
22 |
# Upload PDF
|
23 |
uploaded_file = st.file_uploader("π Upload a PDF (e.g., SME policies, documents):", type=["pdf"])
|
24 |
+
user_question = st.text_input("π¬ Ask a question about the uploaded document:")
|
25 |
|
26 |
if uploaded_file:
|
27 |
with open("temp.pdf", "wb") as f:
|
28 |
f.write(uploaded_file.read())
|
29 |
|
30 |
+
# Load PDF and split into chunks
|
31 |
loader = PyPDFLoader("temp.pdf")
|
32 |
documents = loader.load()
|
33 |
|
|
|
34 |
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
35 |
chunks = splitter.split_documents(documents)
|
36 |
|
37 |
+
# Create vector store
|
38 |
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
39 |
vectorstore = FAISS.from_documents(chunks, embeddings)
|
40 |
retriever = vectorstore.as_retriever()
|
41 |
|
42 |
+
# Load Groq LLaMA3
|
43 |
llm = ChatGroq(temperature=0.3, model_name="llama3-8b-8192")
|
44 |
|
45 |
+
# Set up RetrievalQA chain
|
46 |
+
qa_chain = RetrievalQA.from_chain_type(
|
47 |
llm=llm,
|
48 |
chain_type="stuff",
|
49 |
retriever=retriever,
|
50 |
return_source_documents=True
|
51 |
)
|
52 |
|
53 |
+
# Handle user query
|
54 |
if user_question:
|
55 |
+
with st.spinner("π€ Thinking..."):
|
56 |
+
result = qa_chain({"query": user_question})
|
57 |
+
st.success("β
Answer:")
|
58 |
+
st.write(result["result"])
|
59 |
|
60 |
with st.expander("π Source Snippets"):
|
61 |
for i, doc in enumerate(result["source_documents"]):
|
62 |
st.markdown(f"**Source {i+1}:**\n{doc.page_content[:300]}...")
|
|
|
63 |
else:
|
64 |
+
st.info("π Upload a PDF and ask a question to get started.")
|