Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,5 +1,6 @@
|
|
1 |
import os
|
2 |
import streamlit as st
|
|
|
3 |
from langchain_community.document_loaders import PyPDFLoader
|
4 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
from langchain.vectorstores import FAISS
|
@@ -7,11 +8,11 @@ from langchain.embeddings import HuggingFaceEmbeddings
|
|
7 |
from langchain.chains import RetrievalQA
|
8 |
from langchain_groq import ChatGroq # β
Correct import
|
9 |
|
10 |
-
# Set
|
11 |
st.set_page_config(page_title="SMEHelpBot π€", layout="wide")
|
12 |
st.title("π€ SMEHelpBot β Your AI Assistant for Small Businesses")
|
13 |
|
14 |
-
#
|
15 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
16 |
if not GROQ_API_KEY:
|
17 |
st.error("β Please set your GROQ_API_KEY in environment or .streamlit/secrets.toml")
|
@@ -19,46 +20,49 @@ if not GROQ_API_KEY:
|
|
19 |
|
20 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
user_question = st.text_input("π¬ Ask a question about the uploaded document:")
|
25 |
|
26 |
-
if
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
documents = loader.load()
|
33 |
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
-
|
38 |
-
|
39 |
-
vectorstore = FAISS.from_documents(chunks, embeddings)
|
40 |
-
retriever = vectorstore.as_retriever()
|
41 |
|
42 |
-
|
43 |
-
|
|
|
|
|
|
|
|
|
|
|
44 |
|
45 |
-
|
46 |
-
|
47 |
-
llm=llm,
|
48 |
-
chain_type="stuff",
|
49 |
-
retriever=retriever,
|
50 |
-
return_source_documents=True
|
51 |
-
)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
st.write(result["result"])
|
59 |
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
else:
|
64 |
-
st.info("π Upload a PDF and ask a question to get started.")
|
|
|
1 |
import os
|
2 |
import streamlit as st
|
3 |
+
from glob import glob
|
4 |
from langchain_community.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
from langchain.vectorstores import FAISS
|
|
|
8 |
from langchain.chains import RetrievalQA
|
9 |
from langchain_groq import ChatGroq # β
Correct import
|
10 |
|
11 |
+
# Set page config
|
12 |
st.set_page_config(page_title="SMEHelpBot π€", layout="wide")
|
13 |
st.title("π€ SMEHelpBot β Your AI Assistant for Small Businesses")
|
14 |
|
15 |
+
# Load API key
|
16 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY") or os.getenv("GROQ_API_KEY")
|
17 |
if not GROQ_API_KEY:
|
18 |
st.error("β Please set your GROQ_API_KEY in environment or .streamlit/secrets.toml")
|
|
|
20 |
|
21 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
22 |
|
23 |
+
# Load all PDFs from the 'docs' folder
|
24 |
+
pdf_paths = glob("docs/*.pdf")
|
|
|
25 |
|
26 |
+
if not pdf_paths:
|
27 |
+
st.warning("π Please place some PDF files in the `docs/` folder.")
|
28 |
+
st.stop()
|
29 |
+
|
30 |
+
st.info(f"π Loaded {len(pdf_paths)} document(s) from `docs/`")
|
31 |
+
|
32 |
+
# Load and split all PDFs
|
33 |
+
documents = []
|
34 |
+
for path in pdf_paths:
|
35 |
+
loader = PyPDFLoader(path)
|
36 |
+
documents.extend(loader.load())
|
37 |
|
38 |
+
splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50)
|
39 |
+
chunks = splitter.split_documents(documents)
|
|
|
40 |
|
41 |
+
# Create vector store from chunks
|
42 |
+
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
|
43 |
+
vectorstore = FAISS.from_documents(chunks, embeddings)
|
44 |
+
retriever = vectorstore.as_retriever()
|
45 |
|
46 |
+
# Set up LLM with Groq
|
47 |
+
llm = ChatGroq(temperature=0.3, model_name="llama3-8b-8192")
|
|
|
|
|
48 |
|
49 |
+
# Build QA chain
|
50 |
+
qa_chain = RetrievalQA.from_chain_type(
|
51 |
+
llm=llm,
|
52 |
+
chain_type="stuff",
|
53 |
+
retriever=retriever,
|
54 |
+
return_source_documents=True
|
55 |
+
)
|
56 |
|
57 |
+
# Ask question
|
58 |
+
user_question = st.text_input("π¬ Ask your question about SME documents:")
|
|
|
|
|
|
|
|
|
|
|
59 |
|
60 |
+
if user_question:
|
61 |
+
with st.spinner("π€ Thinking..."):
|
62 |
+
result = qa_chain({"query": user_question})
|
63 |
+
st.success("β
Answer:")
|
64 |
+
st.write(result["result"])
|
|
|
65 |
|
66 |
+
with st.expander("π Source Snippets"):
|
67 |
+
for i, doc in enumerate(result["source_documents"]):
|
68 |
+
st.markdown(f"**Source {i+1}:**\n{doc.page_content[:300]}...")
|
|
|
|