Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -17,11 +17,13 @@ from twilio.base.exceptions import TwilioRestException
|
|
17 |
import pdfplumber
|
18 |
import datetime
|
19 |
import csv
|
|
|
|
|
20 |
|
21 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
22 |
os.environ["PYTORCH_JIT"] = "0"
|
23 |
|
24 |
-
# ---------------- PDF & DOCX Extraction ----------------
|
25 |
def _extract_tables_from_page(page):
|
26 |
tables = page.extract_tables()
|
27 |
formatted_tables = []
|
@@ -68,6 +70,26 @@ def extract_text_from_docx(docx_path):
|
|
68 |
except:
|
69 |
return ""
|
70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
# ---------------- Chunking ----------------
|
72 |
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
|
73 |
tokens = tokenizer.tokenize(text)
|
@@ -96,7 +118,7 @@ def generate_answer_with_groq(question, context):
|
|
96 |
}
|
97 |
prompt = (
|
98 |
f"Customer asked: '{question}'\n\n"
|
99 |
-
f"Here is the relevant
|
100 |
f"Respond in a friendly and helpful tone as a toy shop support agent."
|
101 |
)
|
102 |
payload = {
|
@@ -144,22 +166,27 @@ def setup_knowledge_base():
|
|
144 |
folder_path = "docs"
|
145 |
all_text = ""
|
146 |
|
147 |
-
for filename in
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
|
|
163 |
|
164 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
165 |
chunks = chunk_text(all_text, tokenizer)
|
@@ -196,7 +223,7 @@ def start_conversation_monitor(client, index, embed_model, text_chunks):
|
|
196 |
threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()
|
197 |
|
198 |
# ---------------- Main Entry ----------------
|
199 |
-
if
|
200 |
st.title("🤖 ToyBot WhatsApp Assistant")
|
201 |
st.write("Initializing knowledge base...")
|
202 |
|
|
|
17 |
import pdfplumber
|
18 |
import datetime
|
19 |
import csv
|
20 |
+
import json
|
21 |
+
import re
|
22 |
|
23 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
24 |
os.environ["PYTORCH_JIT"] = "0"
|
25 |
|
26 |
+
# ---------------- PDF & DOCX & JSON Extraction ----------------
|
27 |
def _extract_tables_from_page(page):
|
28 |
tables = page.extract_tables()
|
29 |
formatted_tables = []
|
|
|
70 |
except:
|
71 |
return ""
|
72 |
|
73 |
+
def load_json_data(json_path):
|
74 |
+
try:
|
75 |
+
with open(json_path, 'r', encoding='utf-8') as f:
|
76 |
+
data = json.load(f)
|
77 |
+
if isinstance(data, dict):
|
78 |
+
# Flatten dictionary values (avoiding nested structures as strings)
|
79 |
+
return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
|
80 |
+
elif isinstance(data, list):
|
81 |
+
# Flatten list of dictionaries
|
82 |
+
all_items = []
|
83 |
+
for item in data:
|
84 |
+
if isinstance(item, dict):
|
85 |
+
all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
|
86 |
+
return "\n\n".join(all_items)
|
87 |
+
else:
|
88 |
+
return json.dumps(data, ensure_ascii=False, indent=2)
|
89 |
+
except Exception as e:
|
90 |
+
print(f"JSON read error: {e}")
|
91 |
+
return ""
|
92 |
+
|
93 |
# ---------------- Chunking ----------------
|
94 |
def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
|
95 |
tokens = tokenizer.tokenize(text)
|
|
|
118 |
}
|
119 |
prompt = (
|
120 |
f"Customer asked: '{question}'\n\n"
|
121 |
+
f"Here is the relevant information to help:\n{context}\n\n"
|
122 |
f"Respond in a friendly and helpful tone as a toy shop support agent."
|
123 |
)
|
124 |
payload = {
|
|
|
166 |
folder_path = "docs"
|
167 |
all_text = ""
|
168 |
|
169 |
+
for filename in os.listdir(folder_path):
|
170 |
+
file_path = os.path.join(folder_path, filename)
|
171 |
+
if filename.endswith(".pdf"):
|
172 |
+
text, tables = extract_text_from_pdf(file_path)
|
173 |
+
all_text += clean_extracted_text(text) + "\n"
|
174 |
+
all_text += _format_tables_internal(tables) + "\n"
|
175 |
+
elif filename.endswith(".docx"):
|
176 |
+
text = extract_text_from_docx(file_path)
|
177 |
+
all_text += clean_extracted_text(text) + "\n"
|
178 |
+
elif filename.endswith(".json"):
|
179 |
+
text = load_json_data(file_path)
|
180 |
+
all_text += text + "\n"
|
181 |
+
elif filename.endswith(".csv"):
|
182 |
+
try:
|
183 |
+
with open(file_path, newline='', encoding='utf-8') as csvfile:
|
184 |
+
reader = csv.DictReader(csvfile)
|
185 |
+
for row in reader:
|
186 |
+
line = ' | '.join(f"{k}: {v}" for k, v in row.items())
|
187 |
+
all_text += line + "\n"
|
188 |
+
except Exception as e:
|
189 |
+
print(f"CSV read error: {e}")
|
190 |
|
191 |
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
192 |
chunks = chunk_text(all_text, tokenizer)
|
|
|
223 |
threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()
|
224 |
|
225 |
# ---------------- Main Entry ----------------
|
226 |
+
if __name__ == "__main__":
|
227 |
st.title("🤖 ToyBot WhatsApp Assistant")
|
228 |
st.write("Initializing knowledge base...")
|
229 |
|