Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,16 +23,18 @@ import re
|
|
23 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
24 |
os.environ["PYTORCH_JIT"] = "0"
|
25 |
|
|
|
|
|
|
|
|
|
|
|
26 |
# ---------------- PDF & DOCX & JSON Extraction ----------------
|
27 |
def _extract_tables_from_page(page):
|
28 |
tables = page.extract_tables()
|
29 |
formatted_tables = []
|
30 |
for table in tables:
|
31 |
-
|
32 |
-
|
33 |
-
formatted_row = [cell if cell is not None else "" for cell in row]
|
34 |
-
formatted_table.append(formatted_row)
|
35 |
-
formatted_tables.append(formatted_table)
|
36 |
return formatted_tables
|
37 |
|
38 |
def extract_text_from_pdf(pdf_path):
|
@@ -46,48 +48,40 @@ def extract_text_from_pdf(pdf_path):
|
|
46 |
if text:
|
47 |
text_output.write(text + "\n\n")
|
48 |
except Exception as e:
|
49 |
-
print(f"pdfplumber error: {e}")
|
50 |
with open(pdf_path, 'rb') as file:
|
51 |
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
|
52 |
return text_output.getvalue(), all_tables
|
53 |
|
54 |
def _format_tables_internal(tables):
|
55 |
-
|
56 |
for table in tables:
|
57 |
with StringIO() as csvfile:
|
58 |
writer = csv.writer(csvfile)
|
59 |
writer.writerows(table)
|
60 |
-
|
61 |
-
return "\n\n".join(
|
62 |
|
63 |
def clean_extracted_text(text):
|
64 |
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
|
65 |
|
66 |
-
def extract_text_from_docx(
|
67 |
try:
|
68 |
-
doc = docx.Document(
|
69 |
-
return '\n'.join(
|
70 |
except:
|
71 |
return ""
|
72 |
|
73 |
-
def load_json_data(
|
74 |
try:
|
75 |
-
with open(
|
76 |
data = json.load(f)
|
77 |
if isinstance(data, dict):
|
78 |
-
|
79 |
-
return "\n".join(f"{key}: {value}" for key, value in data.items() if not isinstance(value, (dict, list)))
|
80 |
elif isinstance(data, list):
|
81 |
-
|
82 |
-
all_items = []
|
83 |
-
for item in data:
|
84 |
-
if isinstance(item, dict):
|
85 |
-
all_items.append("\n".join(f"{key}: {value}" for key, value in item.items() if not isinstance(value, (dict, list))))
|
86 |
-
return "\n\n".join(all_items)
|
87 |
else:
|
88 |
return json.dumps(data, ensure_ascii=False, indent=2)
|
89 |
except Exception as e:
|
90 |
-
print(f"JSON read error: {e}")
|
91 |
return ""
|
92 |
|
93 |
# ---------------- Chunking ----------------
|
@@ -99,7 +93,6 @@ def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
|
|
99 |
end = min(start + chunk_size, len(tokens))
|
100 |
chunk = tokens[start:end]
|
101 |
chunks.append(tokenizer.convert_tokens_to_string(chunk))
|
102 |
-
if end == len(tokens): break
|
103 |
start += chunk_size - chunk_overlap
|
104 |
return chunks
|
105 |
|
@@ -112,36 +105,18 @@ def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
|
112 |
def generate_answer_with_groq(question, context):
|
113 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
114 |
api_key = os.environ.get("GROQ_API_KEY")
|
115 |
-
headers = {
|
116 |
-
|
117 |
-
"Content-Type": "application/json",
|
118 |
-
}
|
119 |
-
prompt = (
|
120 |
-
f"Customer asked: '{question}'\n\n"
|
121 |
-
f"Here is the relevant information to help:\n{context}\n\n"
|
122 |
-
f"Respond in a friendly and helpful tone as a toy shop support agent, "
|
123 |
-
f"addressing the customer by their name if it's available in the context."
|
124 |
-
)
|
125 |
payload = {
|
126 |
"model": "llama3-8b-8192",
|
127 |
"messages": [
|
128 |
-
{
|
129 |
-
"role": "system",
|
130 |
-
"content": (
|
131 |
-
"You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
|
132 |
-
"Help customers with toys, delivery, and returns in a helpful tone. "
|
133 |
-
"When responding, try to find the customer's name in the provided context "
|
134 |
-
"and address them directly. If the context contains order details and status, "
|
135 |
-
"include that information in your response."
|
136 |
-
)
|
137 |
-
},
|
138 |
{"role": "user", "content": prompt},
|
139 |
],
|
140 |
"temperature": 0.5,
|
141 |
"max_tokens": 300,
|
142 |
}
|
143 |
response = requests.post(url, headers=headers, json=payload)
|
144 |
-
response.raise_for_status()
|
145 |
return response.json()['choices'][0]['message']['content'].strip()
|
146 |
|
147 |
# ---------------- Twilio Integration ----------------
|
@@ -150,101 +125,62 @@ def fetch_latest_incoming_message(client, conversation_sid):
|
|
150 |
messages = client.conversations.v1.conversations(conversation_sid).messages.list()
|
151 |
for msg in reversed(messages):
|
152 |
if msg.author.startswith("whatsapp:"):
|
153 |
-
return {
|
154 |
-
|
155 |
-
|
156 |
-
"author": msg.author,
|
157 |
-
"timestamp": msg.date_created,
|
158 |
-
}
|
159 |
-
except TwilioRestException as e:
|
160 |
-
print(f"Twilio error: {e}")
|
161 |
-
return None
|
162 |
|
163 |
def send_twilio_message(client, conversation_sid, body):
|
164 |
-
return client.conversations.v1.conversations(conversation_sid).messages.create(
|
165 |
-
author="system", body=body
|
166 |
-
)
|
167 |
|
168 |
# ---------------- Knowledge Base Setup ----------------
|
169 |
def setup_knowledge_base():
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
text
|
177 |
-
|
178 |
-
|
179 |
-
elif
|
180 |
-
text
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
|
221 |
-
answer = generate_answer_with_groq(question, context)
|
222 |
-
send_twilio_message(client, convo_sid, answer)
|
223 |
-
time.sleep(5)
|
224 |
-
|
225 |
-
for convo in client.conversations.v1.conversations.list():
|
226 |
-
# convo.date_created is a datetime object in UTC, compare it with APP_START_TIME
|
227 |
-
if convo.date_created is not None and convo.date_created > APP_START_TIME:
|
228 |
-
if convo.sid not in processed_convos:
|
229 |
-
processed_convos.add(convo.sid)
|
230 |
-
threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()
|
231 |
-
|
232 |
-
|
233 |
-
# ---------------- Main Entry ----------------
|
234 |
-
if __name__ == "__main__":
|
235 |
-
st.title("🤖 ToyBot WhatsApp Assistant")
|
236 |
-
st.write("Initializing knowledge base...")
|
237 |
-
|
238 |
-
index, model, chunks = setup_knowledge_base()
|
239 |
-
|
240 |
-
st.success("Knowledge base loaded.")
|
241 |
-
st.write("Waiting for WhatsApp messages...")
|
242 |
-
|
243 |
-
account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
|
244 |
-
auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
|
245 |
-
if not account_sid or not auth_token:
|
246 |
-
st.error("❌ Twilio credentials not set.")
|
247 |
-
else:
|
248 |
-
client = Client(account_sid, auth_token)
|
249 |
-
start_conversation_monitor(client, index, model, chunks)
|
250 |
-
st.info("✅ Bot is now monitoring Twilio conversations.")
|
|
|
23 |
APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
|
24 |
os.environ["PYTORCH_JIT"] = "0"
|
25 |
|
26 |
+
# Twilio Setup
|
27 |
+
TWILIO_ACCOUNT_SID = os.getenv("TWILIO_ACCOUNT_SID")
|
28 |
+
TWILIO_AUTH_TOKEN = os.getenv("TWILIO_AUTH_TOKEN")
|
29 |
+
twilio_client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN)
|
30 |
+
|
31 |
# ---------------- PDF & DOCX & JSON Extraction ----------------
|
32 |
def _extract_tables_from_page(page):
|
33 |
tables = page.extract_tables()
|
34 |
formatted_tables = []
|
35 |
for table in tables:
|
36 |
+
formatted_row = [[cell if cell is not None else "" for cell in row] for row in table]
|
37 |
+
formatted_tables.append(formatted_row)
|
|
|
|
|
|
|
38 |
return formatted_tables
|
39 |
|
40 |
def extract_text_from_pdf(pdf_path):
|
|
|
48 |
if text:
|
49 |
text_output.write(text + "\n\n")
|
50 |
except Exception as e:
|
|
|
51 |
with open(pdf_path, 'rb') as file:
|
52 |
extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
|
53 |
return text_output.getvalue(), all_tables
|
54 |
|
55 |
def _format_tables_internal(tables):
|
56 |
+
formatted = []
|
57 |
for table in tables:
|
58 |
with StringIO() as csvfile:
|
59 |
writer = csv.writer(csvfile)
|
60 |
writer.writerows(table)
|
61 |
+
formatted.append(csvfile.getvalue())
|
62 |
+
return "\n\n".join(formatted)
|
63 |
|
64 |
def clean_extracted_text(text):
|
65 |
return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
|
66 |
|
67 |
+
def extract_text_from_docx(path):
|
68 |
try:
|
69 |
+
doc = docx.Document(path)
|
70 |
+
return '\n'.join(p.text for p in doc.paragraphs)
|
71 |
except:
|
72 |
return ""
|
73 |
|
74 |
+
def load_json_data(path):
|
75 |
try:
|
76 |
+
with open(path, 'r', encoding='utf-8') as f:
|
77 |
data = json.load(f)
|
78 |
if isinstance(data, dict):
|
79 |
+
return "\n".join(f"{k}: {v}" for k, v in data.items() if not isinstance(v, (dict, list)))
|
|
|
80 |
elif isinstance(data, list):
|
81 |
+
return "\n\n".join("\n".join(f"{k}: {v}" for k, v in item.items() if not isinstance(v, (dict, list))) for item in data if isinstance(item, dict))
|
|
|
|
|
|
|
|
|
|
|
82 |
else:
|
83 |
return json.dumps(data, ensure_ascii=False, indent=2)
|
84 |
except Exception as e:
|
|
|
85 |
return ""
|
86 |
|
87 |
# ---------------- Chunking ----------------
|
|
|
93 |
end = min(start + chunk_size, len(tokens))
|
94 |
chunk = tokens[start:end]
|
95 |
chunks.append(tokenizer.convert_tokens_to_string(chunk))
|
|
|
96 |
start += chunk_size - chunk_overlap
|
97 |
return chunks
|
98 |
|
|
|
105 |
def generate_answer_with_groq(question, context):
|
106 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
107 |
api_key = os.environ.get("GROQ_API_KEY")
|
108 |
+
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
|
109 |
+
prompt = f"Customer asked: '{question}'\n\nHere is the relevant information to help:\n{context}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
110 |
payload = {
|
111 |
"model": "llama3-8b-8192",
|
112 |
"messages": [
|
113 |
+
{"role": "system", "content": "You are ToyBot, a friendly WhatsApp assistant..."},
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
114 |
{"role": "user", "content": prompt},
|
115 |
],
|
116 |
"temperature": 0.5,
|
117 |
"max_tokens": 300,
|
118 |
}
|
119 |
response = requests.post(url, headers=headers, json=payload)
|
|
|
120 |
return response.json()['choices'][0]['message']['content'].strip()
|
121 |
|
122 |
# ---------------- Twilio Integration ----------------
|
|
|
125 |
messages = client.conversations.v1.conversations(conversation_sid).messages.list()
|
126 |
for msg in reversed(messages):
|
127 |
if msg.author.startswith("whatsapp:"):
|
128 |
+
return {"sid": msg.sid, "body": msg.body, "author": msg.author, "timestamp": msg.date_created}
|
129 |
+
except TwilioRestException:
|
130 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
131 |
|
132 |
def send_twilio_message(client, conversation_sid, body):
|
133 |
+
return client.conversations.v1.conversations(conversation_sid).messages.create(author="system", body=body)
|
|
|
|
|
134 |
|
135 |
# ---------------- Knowledge Base Setup ----------------
|
136 |
def setup_knowledge_base():
|
137 |
+
folder = "docs"
|
138 |
+
text = ""
|
139 |
+
for f in os.listdir(folder):
|
140 |
+
path = os.path.join(folder, f)
|
141 |
+
if f.endswith(".pdf"):
|
142 |
+
t, tables = extract_text_from_pdf(path)
|
143 |
+
text += clean_extracted_text(t) + "\n" + _format_tables_internal(tables) + "\n"
|
144 |
+
elif f.endswith(".docx"):
|
145 |
+
text += clean_extracted_text(extract_text_from_docx(path)) + "\n"
|
146 |
+
elif f.endswith(".json"):
|
147 |
+
text += load_json_data(path) + "\n"
|
148 |
+
elif f.endswith(".csv"):
|
149 |
+
with open(path, newline='', encoding='utf-8') as csvfile:
|
150 |
+
reader = csv.DictReader(csvfile)
|
151 |
+
for row in reader:
|
152 |
+
text += ' | '.join(f"{k}: {v}" for k, v in row.items()) + "\n"
|
153 |
+
return text
|
154 |
+
|
155 |
+
# ---------------- Message Processing Loop ----------------
|
156 |
+
def process_messages_loop(conversation_sid, index, text_chunks, tokenizer, embed_model):
|
157 |
+
processed_sids = set()
|
158 |
+
while True:
|
159 |
+
message = fetch_latest_incoming_message(twilio_client, conversation_sid)
|
160 |
+
if message and message['sid'] not in processed_sids and message['timestamp'] > APP_START_TIME:
|
161 |
+
question = message['body']
|
162 |
+
relevant = retrieve_chunks(question, index, embed_model, text_chunks)
|
163 |
+
answer = generate_answer_with_groq(question, '\n'.join(relevant))
|
164 |
+
send_twilio_message(twilio_client, conversation_sid, answer)
|
165 |
+
processed_sids.add(message['sid'])
|
166 |
+
time.sleep(5)
|
167 |
+
|
168 |
+
# ---------------- Streamlit UI ----------------
|
169 |
+
st.title("📱 ToyShop WhatsApp Chatbot")
|
170 |
+
kb_text = setup_knowledge_base()
|
171 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
172 |
+
embed_model = SentenceTransformer("all-MiniLM-L6-v2")
|
173 |
+
chunks = chunk_text(kb_text, tokenizer)
|
174 |
+
embeddings = embed_model.encode(chunks)
|
175 |
+
index = faiss.IndexFlatL2(len(embeddings[0]))
|
176 |
+
index.add(np.array(embeddings))
|
177 |
+
|
178 |
+
# Automatically fetch conversation SID
|
179 |
+
conversations = twilio_client.conversations.v1.conversations.list(limit=5)
|
180 |
+
conversation_sid = conversations[0].sid if conversations else None
|
181 |
+
|
182 |
+
if conversation_sid:
|
183 |
+
st.success(f"Monitoring Twilio conversation SID: {conversation_sid}")
|
184 |
+
threading.Thread(target=process_messages_loop, args=(conversation_sid, index, chunks, tokenizer, embed_model), daemon=True).start()
|
185 |
+
else:
|
186 |
+
st.error("No active Twilio conversation found.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|