masadonline commited on
Commit
d765f67
Β·
verified Β·
1 Parent(s): a08fc72

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +67 -147
app.py CHANGED
@@ -13,108 +13,80 @@ import requests
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
- from twilio.base.exceptions import TwilioRestException # Add this at the top
17
  import pdfplumber
18
  import datetime
19
  import csv
20
 
21
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
22
-
23
  os.environ["PYTORCH_JIT"] = "0"
24
 
25
- # --- PDF Extraction ---
26
  def _extract_tables_from_page(page):
27
- """Extracts tables from a single page of a PDF."""
28
-
29
  tables = page.extract_tables()
30
- if not tables:
31
- return []
32
-
33
  formatted_tables = []
34
  for table in tables:
35
  formatted_table = []
36
  for row in table:
37
- if row: # Filter out empty rows
38
- formatted_row = [cell if cell is not None else "" for cell in row] # Replace None with ""
39
- formatted_table.append(formatted_row)
40
- else:
41
- formatted_table.append([""]) # Append an empty row if the row is None
42
  formatted_tables.append(formatted_table)
43
  return formatted_tables
44
-
45
  def extract_text_from_pdf(pdf_path):
46
  text_output = StringIO()
47
  all_tables = []
48
  try:
49
  with pdfplumber.open(pdf_path) as pdf:
50
  for page in pdf.pages:
51
- # Extract tables
52
- page_tables = _extract_tables_from_page(page)
53
- if page_tables:
54
- all_tables.extend(page_tables)
55
- # Extract text
56
  text = page.extract_text()
57
  if text:
58
  text_output.write(text + "\n\n")
59
  except Exception as e:
60
- print(f"Error extracting with pdfplumber: {e}")
61
- # Fallback to pdfminer if pdfplumber fails
62
  with open(pdf_path, 'rb') as file:
63
- extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
64
- extracted_text = text_output.getvalue()
65
- return extracted_text, all_tables # Return text and list of tables
66
-
67
- def clean_extracted_text(text):
68
- lines = text.splitlines()
69
- cleaned = []
70
- for line in lines:
71
- line = line.strip()
72
- if line:
73
- line = ' '.join(line.split())
74
- cleaned.append(line)
75
- return '\n'.join(cleaned)
76
 
77
  def _format_tables_internal(tables):
78
- """Formats extracted tables into a string representation."""
79
-
80
  formatted_tables_str = []
81
  for table in tables:
82
- # Use csv writer to handle commas and quotes correctly
83
  with StringIO() as csvfile:
84
- csvwriter = csv.writer(csvfile)
85
- csvwriter.writerows(table)
86
  formatted_tables_str.append(csvfile.getvalue())
87
  return "\n\n".join(formatted_tables_str)
88
 
89
- # --- DOCX Extraction ---
 
 
90
  def extract_text_from_docx(docx_path):
91
  try:
92
  doc = docx.Document(docx_path)
93
  return '\n'.join(para.text for para in doc.paragraphs)
94
- except Exception:
95
  return ""
96
 
97
- # --- Chunking ---
98
- def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
99
  tokens = tokenizer.tokenize(text)
100
  chunks = []
101
  start = 0
102
  while start < len(tokens):
103
  end = min(start + chunk_size, len(tokens))
104
- chunk_tokens = tokens[start:end]
105
- chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
106
- chunks.append(chunk_text)
107
- if end == len(tokens):
108
- break
109
  start += chunk_size - chunk_overlap
110
  return chunks
111
 
112
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
113
- question_embedding = embed_model.encode(question)
114
- D, I = index.search(np.array([question_embedding]), k)
115
  return [text_chunks[i] for i in I[0]]
116
 
117
- # --- Groq Answer Generator ---
118
  def generate_answer_with_groq(question, context):
119
  url = "https://api.groq.com/openai/v1/chat/completions"
120
  api_key = os.environ.get("GROQ_API_KEY")
@@ -133,9 +105,8 @@ def generate_answer_with_groq(question, context):
133
  {
134
  "role": "system",
135
  "content": (
136
- "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
137
- "Your goal is to politely answer customer questions, help them choose the right toys, "
138
- "provide order or delivery information, explain return policies, and guide them through purchases."
139
  )
140
  },
141
  {"role": "user", "content": prompt},
@@ -147,7 +118,7 @@ def generate_answer_with_groq(question, context):
147
  response.raise_for_status()
148
  return response.json()['choices'][0]['message']['content'].strip()
149
 
150
- # --- Twilio Functions ---
151
  def fetch_latest_incoming_message(client, conversation_sid):
152
  try:
153
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
@@ -160,14 +131,7 @@ def fetch_latest_incoming_message(client, conversation_sid):
160
  "timestamp": msg.date_created,
161
  }
162
  except TwilioRestException as e:
163
- if e.status == 404:
164
- print(f"Conversation {conversation_sid} not found, skipping...")
165
- else:
166
- print(f"Twilio error fetching messages for {conversation_sid}:", e)
167
- except Exception as e:
168
- #print(f"Unexpected error in fetch_latest_incoming_message for {conversation_sid}:", e)
169
- pass
170
-
171
  return None
172
 
173
  def send_twilio_message(client, conversation_sid, body):
@@ -175,121 +139,77 @@ def send_twilio_message(client, conversation_sid, body):
175
  author="system", body=body
176
  )
177
 
178
- # --- Load Knowledge Base ---
179
  def setup_knowledge_base():
180
  folder_path = "docs"
181
  all_text = ""
182
 
183
- # Process PDFs
184
  for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
185
  pdf_path = os.path.join(folder_path, filename)
186
  text, tables = extract_text_from_pdf(pdf_path)
187
  all_text += clean_extracted_text(text) + "\n"
188
  all_text += _format_tables_internal(tables) + "\n"
189
 
190
- # Process CSVs
191
- for filename in ["CustomerOrders.csv"]:
192
- csv_path = os.path.join(folder_path, filename)
193
  try:
194
- with open(csv_path, newline='', encoding='utf-8') as csvfile:
195
  reader = csv.DictReader(csvfile)
196
  for row in reader:
197
- line = f"Order ID: {row.get('OrderID')} | Customer Name: {row.get('CustomerName')} | Order Date: {row.get('OrderDate')} | ProductID: {row.get('ProductID')} | Date: {row.get('OrderDate')} | Quantity: {row.get('Quantity')} | UnitPrice(USD): {row.get('UnitPrice(USD)')} | TotalPrice(USD): {row.get('TotalPrice(USD)')} | ShippingAddress: {row.get('ShippingAddress')} | OrderStatus: {row.get('OrderStatus')}"
198
  all_text += line + "\n"
199
  except Exception as e:
200
- print(f"❌ Error reading {filename}: {e}")
201
 
202
- for filename in ["Products.csv"]:
203
- csv_path = os.path.join(folder_path, filename)
204
- try:
205
- with open(csv_path, newline='', encoding='utf-8') as csvfile:
206
- reader = csv.DictReader(csvfile)
207
- for row in reader:
208
- line = f"Product ID: {row.get('ProductID')} | Toy Name: {row.get('ToyName')} | Category: {row.get('Category')} | Price(USD): {row.get('Price(USD)')} | Stock Quantity: {row.get('StockQuantity')} | Description: {row.get('Description')}"
209
- all_text += line + "\n"
210
- except Exception as e:
211
- print(f"❌ Error reading {filename}: {e}")
212
-
213
- # Tokenization & chunking
214
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
215
  chunks = chunk_text(all_text, tokenizer)
216
  model = SentenceTransformer('all-mpnet-base-v2')
217
- embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
218
  dim = embeddings[0].shape[0]
219
  index = faiss.IndexFlatL2(dim)
220
  index.add(np.array(embeddings).astype('float32'))
221
  return index, model, chunks
222
 
223
-
224
-
225
- # --- Monitor Conversations ---
226
  def start_conversation_monitor(client, index, embed_model, text_chunks):
227
  processed_convos = set()
228
  last_processed_timestamp = {}
229
 
230
- def poll_conversation(convo_sid):
231
- while True:
232
- try:
233
- latest_msg = fetch_latest_incoming_message(client, convo_sid)
234
- if latest_msg:
235
- msg_time = latest_msg["timestamp"]
236
- if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
237
- last_processed_timestamp[convo_sid] = msg_time
238
- question = latest_msg["body"]
239
- sender = latest_msg["author"]
240
- print(f"\nπŸ“₯ New message from {sender} in {convo_sid}: {question}")
241
- context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
242
- answer = generate_answer_with_groq(question, context)
243
- send_twilio_message(client, convo_sid, answer)
244
- print(f"πŸ“€ Replied to {sender}: {answer}")
245
- time.sleep(3)
246
- except Exception as e:
247
- print(f"❌ Error in convo {convo_sid} polling:", e)
248
- time.sleep(5)
249
-
250
- def poll_new_conversations():
251
- print("➑️ Monitoring for new WhatsApp conversations...")
252
  while True:
253
- try:
254
- conversations = client.conversations.v1.conversations.list(limit=20)
255
- for convo in conversations:
256
- convo_full = client.conversations.v1.conversations(convo.sid).fetch()
257
- if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
258
- participants = client.conversations.v1.conversations(convo.sid).participants.list()
259
- for p in participants:
260
- address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
261
- if address.startswith("whatsapp:"):
262
- print(f"πŸ†• New WhatsApp convo found: {convo.sid}")
263
- processed_convos.add(convo.sid)
264
- threading.Thread(target=poll_conversation, args=(convo.sid,), daemon=True).start()
265
- except Exception as e:
266
- print("❌ Error polling conversations:", e)
267
  time.sleep(5)
268
 
269
- # βœ… Launch conversation polling monitor
270
- threading.Thread(target=poll_new_conversations, daemon=True).start()
 
 
271
 
 
 
 
 
272
 
273
-
274
- # --- Streamlit UI ---
275
- st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
276
- st.title("πŸ“± Quasa – A Smart WhatsApp Chatbot")
277
-
278
- account_sid = st.secrets.get("TWILIO_SID")
279
- auth_token = st.secrets.get("TWILIO_TOKEN")
280
- GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
281
-
282
- if not all([account_sid, auth_token, GROQ_API_KEY]):
283
- st.warning("⚠️ Provide all credentials below:")
284
- account_sid = st.text_input("Twilio SID", value=account_sid or "")
285
- auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
286
- GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
287
-
288
- if all([account_sid, auth_token, GROQ_API_KEY]):
289
- os.environ["GROQ_API_KEY"] = GROQ_API_KEY
290
- client = Client(account_sid, auth_token)
291
-
292
- st.success("🟒 Monitoring new WhatsApp conversations...")
293
  index, model, chunks = setup_knowledge_base()
294
- threading.Thread(target=start_conversation_monitor, args=(client, index, model, chunks), daemon=True).start()
295
- st.info("⏳ Waiting for new messages...")
 
 
 
 
 
 
 
 
 
 
 
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
+ from twilio.base.exceptions import TwilioRestException
17
  import pdfplumber
18
  import datetime
19
  import csv
20
 
21
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
 
22
  os.environ["PYTORCH_JIT"] = "0"
23
 
24
+ # ---------------- PDF & DOCX Extraction ----------------
25
  def _extract_tables_from_page(page):
 
 
26
  tables = page.extract_tables()
 
 
 
27
  formatted_tables = []
28
  for table in tables:
29
  formatted_table = []
30
  for row in table:
31
+ formatted_row = [cell if cell is not None else "" for cell in row]
32
+ formatted_table.append(formatted_row)
 
 
 
33
  formatted_tables.append(formatted_table)
34
  return formatted_tables
35
+
36
  def extract_text_from_pdf(pdf_path):
37
  text_output = StringIO()
38
  all_tables = []
39
  try:
40
  with pdfplumber.open(pdf_path) as pdf:
41
  for page in pdf.pages:
42
+ all_tables.extend(_extract_tables_from_page(page))
 
 
 
 
43
  text = page.extract_text()
44
  if text:
45
  text_output.write(text + "\n\n")
46
  except Exception as e:
47
+ print(f"pdfplumber error: {e}")
 
48
  with open(pdf_path, 'rb') as file:
49
+ extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
50
+ return text_output.getvalue(), all_tables
 
 
 
 
 
 
 
 
 
 
 
51
 
52
  def _format_tables_internal(tables):
 
 
53
  formatted_tables_str = []
54
  for table in tables:
 
55
  with StringIO() as csvfile:
56
+ writer = csv.writer(csvfile)
57
+ writer.writerows(table)
58
  formatted_tables_str.append(csvfile.getvalue())
59
  return "\n\n".join(formatted_tables_str)
60
 
61
+ def clean_extracted_text(text):
62
+ return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
63
+
64
  def extract_text_from_docx(docx_path):
65
  try:
66
  doc = docx.Document(docx_path)
67
  return '\n'.join(para.text for para in doc.paragraphs)
68
+ except:
69
  return ""
70
 
71
+ # ---------------- Chunking ----------------
72
+ def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
73
  tokens = tokenizer.tokenize(text)
74
  chunks = []
75
  start = 0
76
  while start < len(tokens):
77
  end = min(start + chunk_size, len(tokens))
78
+ chunk = tokens[start:end]
79
+ chunks.append(tokenizer.convert_tokens_to_string(chunk))
80
+ if end == len(tokens): break
 
 
81
  start += chunk_size - chunk_overlap
82
  return chunks
83
 
84
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
85
+ q_embedding = embed_model.encode(question)
86
+ D, I = index.search(np.array([q_embedding]), k)
87
  return [text_chunks[i] for i in I[0]]
88
 
89
+ # ---------------- Groq Answer Generator ----------------
90
  def generate_answer_with_groq(question, context):
91
  url = "https://api.groq.com/openai/v1/chat/completions"
92
  api_key = os.environ.get("GROQ_API_KEY")
 
105
  {
106
  "role": "system",
107
  "content": (
108
+ "You are ToyBot, a friendly WhatsApp assistant for an online toy shop. "
109
+ "Help customers with toys, delivery, and returns in a helpful tone."
 
110
  )
111
  },
112
  {"role": "user", "content": prompt},
 
118
  response.raise_for_status()
119
  return response.json()['choices'][0]['message']['content'].strip()
120
 
121
+ # ---------------- Twilio Integration ----------------
122
  def fetch_latest_incoming_message(client, conversation_sid):
123
  try:
124
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
 
131
  "timestamp": msg.date_created,
132
  }
133
  except TwilioRestException as e:
134
+ print(f"Twilio error: {e}")
 
 
 
 
 
 
 
135
  return None
136
 
137
  def send_twilio_message(client, conversation_sid, body):
 
139
  author="system", body=body
140
  )
141
 
142
+ # ---------------- Knowledge Base Setup ----------------
143
  def setup_knowledge_base():
144
  folder_path = "docs"
145
  all_text = ""
146
 
 
147
  for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
148
  pdf_path = os.path.join(folder_path, filename)
149
  text, tables = extract_text_from_pdf(pdf_path)
150
  all_text += clean_extracted_text(text) + "\n"
151
  all_text += _format_tables_internal(tables) + "\n"
152
 
153
+ for filename in ["CustomerOrders.csv", "Products.csv"]:
154
+ path = os.path.join(folder_path, filename)
 
155
  try:
156
+ with open(path, newline='', encoding='utf-8') as csvfile:
157
  reader = csv.DictReader(csvfile)
158
  for row in reader:
159
+ line = ' | '.join(f"{k}: {v}" for k, v in row.items())
160
  all_text += line + "\n"
161
  except Exception as e:
162
+ print(f"CSV read error: {e}")
163
 
 
 
 
 
 
 
 
 
 
 
 
 
164
  tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
165
  chunks = chunk_text(all_text, tokenizer)
166
  model = SentenceTransformer('all-mpnet-base-v2')
167
+ embeddings = model.encode(chunks, show_progress_bar=False)
168
  dim = embeddings[0].shape[0]
169
  index = faiss.IndexFlatL2(dim)
170
  index.add(np.array(embeddings).astype('float32'))
171
  return index, model, chunks
172
 
173
+ # ---------------- Monitor Twilio Conversations ----------------
 
 
174
  def start_conversation_monitor(client, index, embed_model, text_chunks):
175
  processed_convos = set()
176
  last_processed_timestamp = {}
177
 
178
+ def poll_convo(convo_sid):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
179
  while True:
180
+ latest_msg = fetch_latest_incoming_message(client, convo_sid)
181
+ if latest_msg:
182
+ msg_time = latest_msg["timestamp"]
183
+ if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
184
+ last_processed_timestamp[convo_sid] = msg_time
185
+ question = latest_msg["body"]
186
+ sender = latest_msg["author"]
187
+ print(f"πŸ“© New message from {sender}: {question}")
188
+ context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
189
+ answer = generate_answer_with_groq(question, context)
190
+ send_twilio_message(client, convo_sid, answer)
 
 
 
191
  time.sleep(5)
192
 
193
+ for convo in client.conversations.v1.conversations.list():
194
+ if convo.sid not in processed_convos:
195
+ processed_convos.add(convo.sid)
196
+ threading.Thread(target=poll_convo, args=(convo.sid,), daemon=True).start()
197
 
198
+ # ---------------- Main Entry ----------------
199
+ if _name_ == "_main_":
200
+ st.title("πŸ€– ToyBot WhatsApp Assistant")
201
+ st.write("Initializing knowledge base...")
202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
203
  index, model, chunks = setup_knowledge_base()
204
+
205
+ st.success("Knowledge base loaded.")
206
+ st.write("Waiting for WhatsApp messages...")
207
+
208
+ account_sid = os.environ.get("TWILIO_ACCOUNT_SID")
209
+ auth_token = os.environ.get("TWILIO_AUTH_TOKEN")
210
+ if not account_sid or not auth_token:
211
+ st.error("❌ Twilio credentials not set.")
212
+ else:
213
+ client = Client(account_sid, auth_token)
214
+ start_conversation_monitor(client, index, model, chunks)
215
+ st.info("βœ… Bot is now monitoring Twilio conversations.")