Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,7 +2,6 @@ import os
|
|
2 |
import time
|
3 |
import streamlit as st
|
4 |
from twilio.rest import Client
|
5 |
-
from twilio.base.exceptions import TwilioRestException
|
6 |
from pdfminer.high_level import extract_text
|
7 |
from sentence_transformers import SentenceTransformer
|
8 |
from transformers import AutoTokenizer
|
@@ -12,31 +11,33 @@ import docx
|
|
12 |
from groq import Groq
|
13 |
import PyPDF2
|
14 |
import requests
|
15 |
-
from streamlit_extras.st_autorefresh import st_autorefresh
|
16 |
|
17 |
-
|
18 |
-
# --- Document Loaders ---
|
19 |
def extract_text_from_pdf(pdf_path):
|
20 |
try:
|
21 |
text = ""
|
22 |
with open(pdf_path, 'rb') as file:
|
23 |
pdf_reader = PyPDF2.PdfReader(file)
|
24 |
-
for
|
25 |
-
page = pdf_reader.pages[page_num]
|
26 |
page_text = page.extract_text()
|
27 |
if page_text:
|
28 |
text += page_text
|
29 |
return text
|
30 |
-
except:
|
|
|
31 |
return extract_text(pdf_path)
|
32 |
|
|
|
33 |
def extract_text_from_docx(docx_path):
|
34 |
try:
|
35 |
doc = docx.Document(docx_path)
|
36 |
return '\n'.join(para.text for para in doc.paragraphs)
|
37 |
-
except:
|
|
|
38 |
return ""
|
39 |
|
|
|
40 |
def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
|
41 |
tokens = tokenizer.tokenize(text)
|
42 |
chunks, start = [], 0
|
@@ -47,15 +48,19 @@ def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
|
|
47 |
start += chunk_size - chunk_overlap
|
48 |
return chunks
|
49 |
|
|
|
50 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
51 |
question_embedding = embed_model.encode([question])[0]
|
52 |
-
D, I = index.search(np.array([question_embedding]), k)
|
53 |
return [text_chunks[i] for i in I[0]]
|
54 |
|
55 |
-
#
|
56 |
def generate_answer_with_groq(question, context, retries=3, delay=2):
|
57 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
58 |
-
api_key = os.environ
|
|
|
|
|
|
|
59 |
headers = {
|
60 |
"Authorization": f"Bearer {api_key}",
|
61 |
"Content-Type": "application/json",
|
@@ -85,17 +90,20 @@ def generate_answer_with_groq(question, context, retries=3, delay=2):
|
|
85 |
|
86 |
for attempt in range(retries):
|
87 |
try:
|
88 |
-
response = requests.post(url, headers=headers, json=payload)
|
|
|
89 |
result = response.json()
|
90 |
return result['choices'][0]['message']['content'].strip()
|
91 |
-
except
|
92 |
-
if
|
93 |
time.sleep(delay)
|
94 |
continue
|
95 |
else:
|
96 |
-
return f"β οΈ Groq API
|
|
|
|
|
97 |
|
98 |
-
#
|
99 |
def fetch_latest_incoming_message(account_sid, auth_token, conversation_sid):
|
100 |
client = Client(account_sid, auth_token)
|
101 |
messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
|
@@ -112,15 +120,13 @@ def send_twilio_message(account_sid, auth_token, conversation_sid, body):
|
|
112 |
except Exception as e:
|
113 |
return str(e)
|
114 |
|
115 |
-
#
|
116 |
st.set_page_config(page_title="Quasa β A Smart WhatsApp Chatbot", layout="wide")
|
117 |
st.title("π± Quasa β A Smart WhatsApp Chatbot")
|
118 |
|
119 |
-
# Initialize session state for last index
|
120 |
if "last_index" not in st.session_state:
|
121 |
st.session_state.last_index = -1
|
122 |
|
123 |
-
# Load secrets or allow manual input
|
124 |
account_sid = st.secrets.get("TWILIO_SID")
|
125 |
auth_token = st.secrets.get("TWILIO_TOKEN")
|
126 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
|
@@ -133,7 +139,6 @@ if not all([account_sid, auth_token, GROQ_API_KEY]):
|
|
133 |
|
134 |
conversation_sid = st.text_input("Enter Conversation SID", value="")
|
135 |
|
136 |
-
# Auto-refresh toggle and interval selector
|
137 |
enable_autorefresh = st.checkbox("π Enable Auto-Refresh", value=True)
|
138 |
interval_seconds = st.selectbox("Refresh Interval (seconds)", options=[5, 10, 15, 30, 60], index=1)
|
139 |
|
@@ -143,25 +148,31 @@ if enable_autorefresh:
|
|
143 |
if all([account_sid, auth_token, GROQ_API_KEY, conversation_sid]):
|
144 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
145 |
|
146 |
-
@st.
|
147 |
def setup_knowledge_base():
|
148 |
folder_path = "docs"
|
149 |
all_text = ""
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
|
|
|
|
|
|
|
|
163 |
|
164 |
index, embedding_model, text_chunks = setup_knowledge_base()
|
|
|
|
|
165 |
|
166 |
st.success("β
Knowledge base ready. Monitoring WhatsApp...")
|
167 |
|
|
|
2 |
import time
|
3 |
import streamlit as st
|
4 |
from twilio.rest import Client
|
|
|
5 |
from pdfminer.high_level import extract_text
|
6 |
from sentence_transformers import SentenceTransformer
|
7 |
from transformers import AutoTokenizer
|
|
|
11 |
from groq import Groq
|
12 |
import PyPDF2
|
13 |
import requests
|
14 |
+
from streamlit_extras.st_autorefresh import st_autorefresh
|
15 |
|
16 |
+
# Extract text from PDF with fallback
|
|
|
17 |
def extract_text_from_pdf(pdf_path):
|
18 |
try:
|
19 |
text = ""
|
20 |
with open(pdf_path, 'rb') as file:
|
21 |
pdf_reader = PyPDF2.PdfReader(file)
|
22 |
+
for page in pdf_reader.pages:
|
|
|
23 |
page_text = page.extract_text()
|
24 |
if page_text:
|
25 |
text += page_text
|
26 |
return text
|
27 |
+
except Exception as e:
|
28 |
+
st.write(f"Fallback pdfminer extraction: {e}")
|
29 |
return extract_text(pdf_path)
|
30 |
|
31 |
+
# Extract text from DOCX
|
32 |
def extract_text_from_docx(docx_path):
|
33 |
try:
|
34 |
doc = docx.Document(docx_path)
|
35 |
return '\n'.join(para.text for para in doc.paragraphs)
|
36 |
+
except Exception as e:
|
37 |
+
st.write(f"Docx extraction error: {e}")
|
38 |
return ""
|
39 |
|
40 |
+
# Chunk text based on tokens
|
41 |
def chunk_text(text, tokenizer, chunk_size=150, chunk_overlap=30):
|
42 |
tokens = tokenizer.tokenize(text)
|
43 |
chunks, start = [], 0
|
|
|
48 |
start += chunk_size - chunk_overlap
|
49 |
return chunks
|
50 |
|
51 |
+
# Retrieve relevant chunks from index
|
52 |
def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
|
53 |
question_embedding = embed_model.encode([question])[0]
|
54 |
+
D, I = index.search(np.array([question_embedding]).astype('float32'), k)
|
55 |
return [text_chunks[i] for i in I[0]]
|
56 |
|
57 |
+
# Generate answer using Groq API with retries and timeout
|
58 |
def generate_answer_with_groq(question, context, retries=3, delay=2):
|
59 |
url = "https://api.groq.com/openai/v1/chat/completions"
|
60 |
+
api_key = os.environ.get("GROQ_API_KEY")
|
61 |
+
if not api_key:
|
62 |
+
return "β οΈ GROQ_API_KEY not set."
|
63 |
+
|
64 |
headers = {
|
65 |
"Authorization": f"Bearer {api_key}",
|
66 |
"Content-Type": "application/json",
|
|
|
90 |
|
91 |
for attempt in range(retries):
|
92 |
try:
|
93 |
+
response = requests.post(url, headers=headers, json=payload, timeout=10)
|
94 |
+
response.raise_for_status()
|
95 |
result = response.json()
|
96 |
return result['choices'][0]['message']['content'].strip()
|
97 |
+
except requests.exceptions.HTTPError as e:
|
98 |
+
if response.status_code == 503 and attempt < retries - 1:
|
99 |
time.sleep(delay)
|
100 |
continue
|
101 |
else:
|
102 |
+
return f"β οΈ Groq API HTTPError: {e}"
|
103 |
+
except Exception as e:
|
104 |
+
return f"β οΈ Groq API Error: {e}"
|
105 |
|
106 |
+
# Twilio message fetch and send
|
107 |
def fetch_latest_incoming_message(account_sid, auth_token, conversation_sid):
|
108 |
client = Client(account_sid, auth_token)
|
109 |
messages = client.conversations.v1.conversations(conversation_sid).messages.list(limit=10)
|
|
|
120 |
except Exception as e:
|
121 |
return str(e)
|
122 |
|
123 |
+
# Streamlit UI
|
124 |
st.set_page_config(page_title="Quasa β A Smart WhatsApp Chatbot", layout="wide")
|
125 |
st.title("π± Quasa β A Smart WhatsApp Chatbot")
|
126 |
|
|
|
127 |
if "last_index" not in st.session_state:
|
128 |
st.session_state.last_index = -1
|
129 |
|
|
|
130 |
account_sid = st.secrets.get("TWILIO_SID")
|
131 |
auth_token = st.secrets.get("TWILIO_TOKEN")
|
132 |
GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
|
|
|
139 |
|
140 |
conversation_sid = st.text_input("Enter Conversation SID", value="")
|
141 |
|
|
|
142 |
enable_autorefresh = st.checkbox("π Enable Auto-Refresh", value=True)
|
143 |
interval_seconds = st.selectbox("Refresh Interval (seconds)", options=[5, 10, 15, 30, 60], index=1)
|
144 |
|
|
|
148 |
if all([account_sid, auth_token, GROQ_API_KEY, conversation_sid]):
|
149 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
150 |
|
151 |
+
@st.cache_data(show_spinner=False)
|
152 |
def setup_knowledge_base():
|
153 |
folder_path = "docs"
|
154 |
all_text = ""
|
155 |
+
try:
|
156 |
+
for file in os.listdir(folder_path):
|
157 |
+
if file.endswith(".pdf"):
|
158 |
+
all_text += extract_text_from_pdf(os.path.join(folder_path, file)) + "\n"
|
159 |
+
elif file.endswith((".docx", ".doc")):
|
160 |
+
all_text += extract_text_from_docx(os.path.join(folder_path, file)) + "\n"
|
161 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
162 |
+
chunks = chunk_text(all_text, tokenizer)
|
163 |
+
model = SentenceTransformer('all-mpnet-base-v2')
|
164 |
+
embeddings = model.encode(chunks)
|
165 |
+
dim = embeddings[0].shape[0]
|
166 |
+
index = faiss.IndexFlatL2(dim)
|
167 |
+
index.add(np.array(embeddings).astype('float32'))
|
168 |
+
return index, model, chunks
|
169 |
+
except Exception as e:
|
170 |
+
st.error(f"Error setting up knowledge base: {e}")
|
171 |
+
return None, None, None
|
172 |
|
173 |
index, embedding_model, text_chunks = setup_knowledge_base()
|
174 |
+
if index is None:
|
175 |
+
st.stop()
|
176 |
|
177 |
st.success("β
Knowledge base ready. Monitoring WhatsApp...")
|
178 |
|