masadonline commited on
Commit
e9f402a
·
verified ·
1 Parent(s): 0a4a544

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +124 -206
app.py CHANGED
@@ -13,283 +13,201 @@ import requests
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
- from twilio.base.exceptions import TwilioRestException # Add this at the top
17
  import pdfplumber
18
  import datetime
19
  import csv
 
 
20
 
21
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
22
-
23
  os.environ["PYTORCH_JIT"] = "0"
24
 
25
- # --- PDF Extraction ---
26
- def _extract_tables_from_page(page):
27
- """Extracts tables from a single page of a PDF."""
 
28
 
 
 
29
  tables = page.extract_tables()
30
- if not tables:
31
- return []
32
-
33
  formatted_tables = []
34
  for table in tables:
35
- formatted_table = []
36
- for row in table:
37
- if row: # Filter out empty rows
38
- formatted_row = [cell if cell is not None else "" for cell in row] # Replace None with ""
39
- formatted_table.append(formatted_row)
40
- else:
41
- formatted_table.append([""]) # Append an empty row if the row is None
42
- formatted_tables.append(formatted_table)
43
  return formatted_tables
44
-
45
  def extract_text_from_pdf(pdf_path):
46
  text_output = StringIO()
47
  all_tables = []
48
  try:
49
  with pdfplumber.open(pdf_path) as pdf:
50
  for page in pdf.pages:
51
- # Extract tables
52
- page_tables = _extract_tables_from_page(page)
53
- if page_tables:
54
- all_tables.extend(page_tables)
55
- # Extract text
56
  text = page.extract_text()
57
  if text:
58
  text_output.write(text + "\n\n")
59
  except Exception as e:
60
- print(f"Error extracting with pdfplumber: {e}")
61
- # Fallback to pdfminer if pdfplumber fails
62
  with open(pdf_path, 'rb') as file:
63
- extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text', codec=None)
64
- extracted_text = text_output.getvalue()
65
- return extracted_text, all_tables # Return text and list of tables
66
-
67
- def clean_extracted_text(text):
68
- lines = text.splitlines()
69
- cleaned = []
70
- for line in lines:
71
- line = line.strip()
72
- if line:
73
- line = ' '.join(line.split())
74
- cleaned.append(line)
75
- return '\n'.join(cleaned)
76
 
77
  def _format_tables_internal(tables):
78
- """Formats extracted tables into a string representation."""
79
-
80
- formatted_tables_str = []
81
  for table in tables:
82
- # Use csv writer to handle commas and quotes correctly
83
  with StringIO() as csvfile:
84
- csvwriter = csv.writer(csvfile)
85
- csvwriter.writerows(table)
86
- formatted_tables_str.append(csvfile.getvalue())
87
- return "\n\n".join(formatted_tables_str)
 
 
 
88
 
89
- # --- DOCX Extraction ---
90
- def extract_text_from_docx(docx_path):
91
  try:
92
- doc = docx.Document(docx_path)
93
- return '\n'.join(para.text for para in doc.paragraphs)
94
- except Exception:
95
  return ""
96
 
97
- # --- Chunking ---
98
- def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32, max_tokens=512):
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  tokens = tokenizer.tokenize(text)
100
  chunks = []
101
  start = 0
102
  while start < len(tokens):
103
  end = min(start + chunk_size, len(tokens))
104
- chunk_tokens = tokens[start:end]
105
- chunk_text = tokenizer.convert_tokens_to_string(chunk_tokens)
106
- chunks.append(chunk_text)
107
- if end == len(tokens):
108
- break
109
  start += chunk_size - chunk_overlap
110
  return chunks
111
 
112
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
113
- question_embedding = embed_model.encode(question)
114
- D, I = index.search(np.array([question_embedding]), k)
115
  return [text_chunks[i] for i in I[0]]
116
 
117
- # --- Groq Answer Generator ---
118
  def generate_answer_with_groq(question, context):
119
  url = "https://api.groq.com/openai/v1/chat/completions"
120
- api_key = os.environ.get("GROQ_API_KEY")
121
- headers = {
122
- "Authorization": f"Bearer {api_key}",
123
- "Content-Type": "application/json",
124
- }
125
- prompt = (
126
- f"Customer asked: '{question}'\n\n"
127
- f"Here is the relevant product or policy info to help:\n{context}\n\n"
128
- f"Respond in a friendly and helpful tone as a toy shop support agent."
129
- )
130
  payload = {
131
  "model": "llama3-8b-8192",
132
  "messages": [
133
- {
134
- "role": "system",
135
- "content": (
136
- "You are ToyBot, a friendly and helpful WhatsApp assistant for an online toy shop. "
137
- "Your goal is to politely answer customer questions, help them choose the right toys, "
138
- "provide order or delivery information, explain return policies, and guide them through purchases."
139
- )
140
- },
141
  {"role": "user", "content": prompt},
142
  ],
143
  "temperature": 0.5,
144
  "max_tokens": 300,
145
  }
146
  response = requests.post(url, headers=headers, json=payload)
147
- response.raise_for_status()
148
  return response.json()['choices'][0]['message']['content'].strip()
149
 
150
- # --- Twilio Functions ---
151
  def fetch_latest_incoming_message(client, conversation_sid):
152
  try:
153
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
154
  for msg in reversed(messages):
155
- if msg.author.startswith("whatsapp:"):
 
 
 
 
156
  return {
157
  "sid": msg.sid,
158
  "body": msg.body,
159
  "author": msg.author,
160
  "timestamp": msg.date_created,
161
  }
162
- except TwilioRestException as e:
163
- if e.status == 404:
164
- print(f"Conversation {conversation_sid} not found, skipping...")
165
- else:
166
- print(f"Twilio error fetching messages for {conversation_sid}:", e)
167
- except Exception as e:
168
- #print(f"Unexpected error in fetch_latest_incoming_message for {conversation_sid}:", e)
169
- pass
170
-
171
- return None
172
 
173
  def send_twilio_message(client, conversation_sid, body):
174
- return client.conversations.v1.conversations(conversation_sid).messages.create(
175
- author="system", body=body
176
- )
177
-
178
- # --- Load Knowledge Base ---
179
- def setup_knowledge_base():
180
- folder_path = "docs"
181
- all_text = ""
182
-
183
- # Process PDFs
184
- for filename in ["FAQ.pdf", "ProductReturnPolicy.pdf"]:
185
- pdf_path = os.path.join(folder_path, filename)
186
- text, tables = extract_text_from_pdf(pdf_path)
187
- all_text += clean_extracted_text(text) + "\n"
188
- all_text += _format_tables_internal(tables) + "\n"
189
-
190
- # Process CSVs
191
- for filename in ["CustomerOrders.csv"]:
192
- csv_path = os.path.join(folder_path, filename)
193
- try:
194
- with open(csv_path, newline='', encoding='utf-8') as csvfile:
195
- reader = csv.DictReader(csvfile)
196
- for row in reader:
197
- line = f"Order ID: {row.get('OrderID')} | Customer Name: {row.get('CustomerName')} | Order Date: {row.get('OrderDate')} | ProductID: {row.get('ProductID')} | Date: {row.get('OrderDate')} | Quantity: {row.get('Quantity')} | UnitPrice(USD): {row.get('UnitPrice(USD)')} | TotalPrice(USD): {row.get('TotalPrice(USD)')} | ShippingAddress: {row.get('ShippingAddress')} | OrderStatus: {row.get('OrderStatus')}"
198
- all_text += line + "\n"
199
- except Exception as e:
200
- print(f"❌ Error reading {filename}: {e}")
201
-
202
- for filename in ["Products.csv"]:
203
- csv_path = os.path.join(folder_path, filename)
204
- try:
205
- with open(csv_path, newline='', encoding='utf-8') as csvfile:
206
- reader = csv.DictReader(csvfile)
207
- for row in reader:
208
- line = f"Product ID: {row.get('ProductID')} | Toy Name: {row.get('ToyName')} | Category: {row.get('Category')} | Price(USD): {row.get('Price(USD)')} | Stock Quantity: {row.get('StockQuantity')} | Description: {row.get('Description')}"
209
- all_text += line + "\n"
210
- except Exception as e:
211
- print(f"❌ Error reading {filename}: {e}")
212
-
213
- # Tokenization & chunking
214
- tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
215
- chunks = chunk_text(all_text, tokenizer)
216
- model = SentenceTransformer('all-mpnet-base-v2')
217
- embeddings = model.encode(chunks, show_progress_bar=False, truncation=True, max_length=512)
218
- dim = embeddings[0].shape[0]
219
- index = faiss.IndexFlatL2(dim)
220
- index.add(np.array(embeddings).astype('float32'))
221
- return index, model, chunks
222
-
223
-
224
 
225
- # --- Monitor Conversations ---
226
- def start_conversation_monitor(client, index, embed_model, text_chunks):
227
- processed_convos = set()
228
- last_processed_timestamp = {}
229
-
230
- def poll_conversation(convo_sid):
231
- while True:
232
- try:
233
- latest_msg = fetch_latest_incoming_message(client, convo_sid)
234
- if latest_msg:
235
- msg_time = latest_msg["timestamp"]
236
- if convo_sid not in last_processed_timestamp or msg_time > last_processed_timestamp[convo_sid]:
237
- last_processed_timestamp[convo_sid] = msg_time
238
- question = latest_msg["body"]
239
- sender = latest_msg["author"]
240
- print(f"\n📥 New message from {sender} in {convo_sid}: {question}")
241
- context = "\n\n".join(retrieve_chunks(question, index, embed_model, text_chunks))
242
- answer = generate_answer_with_groq(question, context)
243
- send_twilio_message(client, convo_sid, answer)
244
- print(f"📤 Replied to {sender}: {answer}")
245
- time.sleep(3)
246
- except Exception as e:
247
- print(f"❌ Error in convo {convo_sid} polling:", e)
248
- time.sleep(5)
249
 
250
- def poll_new_conversations():
251
- print("➡️ Monitoring for new WhatsApp conversations...")
252
- while True:
253
- try:
254
- conversations = client.conversations.v1.conversations.list(limit=20)
255
- for convo in conversations:
256
- convo_full = client.conversations.v1.conversations(convo.sid).fetch()
257
- if convo.sid not in processed_convos and convo_full.date_created > APP_START_TIME:
258
- participants = client.conversations.v1.conversations(convo.sid).participants.list()
259
- for p in participants:
260
- address = p.messaging_binding.get("address", "") if p.messaging_binding else ""
261
- if address.startswith("whatsapp:"):
262
- print(f"🆕 New WhatsApp convo found: {convo.sid}")
263
- processed_convos.add(convo.sid)
264
- threading.Thread(target=poll_conversation, args=(convo.sid,), daemon=True).start()
265
- except Exception as e:
266
- print(" Error polling conversations:", e)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
267
  time.sleep(5)
 
268
 
269
- # Launch conversation polling monitor
270
- threading.Thread(target=poll_new_conversations, daemon=True).start()
271
-
272
-
273
-
274
- # --- Streamlit UI ---
275
- st.set_page_config(page_title="Quasa – A Smart WhatsApp Chatbot", layout="wide")
276
- st.title("📱 Quasa – A Smart WhatsApp Chatbot")
277
-
278
- account_sid = st.secrets.get("TWILIO_SID")
279
- auth_token = st.secrets.get("TWILIO_TOKEN")
280
- GROQ_API_KEY = st.secrets.get("GROQ_API_KEY")
281
 
282
- if not all([account_sid, auth_token, GROQ_API_KEY]):
283
- st.warning("⚠️ Provide all credentials below:")
284
- account_sid = st.text_input("Twilio SID", value=account_sid or "")
285
- auth_token = st.text_input("Twilio Token", type="password", value=auth_token or "")
286
- GROQ_API_KEY = st.text_input("GROQ API Key", type="password", value=GROQ_API_KEY or "")
287
 
288
- if all([account_sid, auth_token, GROQ_API_KEY]):
289
- os.environ["GROQ_API_KEY"] = GROQ_API_KEY
290
- client = Client(account_sid, auth_token)
291
 
292
- st.success("🟢 Monitoring new WhatsApp conversations...")
293
- index, model, chunks = setup_knowledge_base()
294
- threading.Thread(target=start_conversation_monitor, args=(client, index, model, chunks), daemon=True).start()
295
- st.info(" Waiting for new messages...")
 
13
  from io import StringIO
14
  from pdfminer.high_level import extract_text_to_fp
15
  from pdfminer.layout import LAParams
16
+ from twilio.base.exceptions import TwilioRestException
17
  import pdfplumber
18
  import datetime
19
  import csv
20
+ import json
21
+ import re
22
 
23
  APP_START_TIME = datetime.datetime.now(datetime.timezone.utc)
 
24
  os.environ["PYTORCH_JIT"] = "0"
25
 
26
+ # Twilio Setup
27
+ TWILIO_ACCOUNT_SID = os.getenv("TWILIO_ACCOUNT_SID")
28
+ TWILIO_AUTH_TOKEN = os.getenv("TWILIO_AUTH_TOKEN")
29
+ twilio_client = Client(TWILIO_ACCOUNT_SID, TWILIO_AUTH_TOKEN)
30
 
31
+ # ---------------- PDF & DOCX & JSON Extraction ----------------
32
+ def _extract_tables_from_page(page):
33
  tables = page.extract_tables()
 
 
 
34
  formatted_tables = []
35
  for table in tables:
36
+ formatted_row = [[cell if cell is not None else "" for cell in row] for row in table]
37
+ formatted_tables.append(formatted_row)
 
 
 
 
 
 
38
  return formatted_tables
39
+
40
  def extract_text_from_pdf(pdf_path):
41
  text_output = StringIO()
42
  all_tables = []
43
  try:
44
  with pdfplumber.open(pdf_path) as pdf:
45
  for page in pdf.pages:
46
+ all_tables.extend(_extract_tables_from_page(page))
 
 
 
 
47
  text = page.extract_text()
48
  if text:
49
  text_output.write(text + "\n\n")
50
  except Exception as e:
 
 
51
  with open(pdf_path, 'rb') as file:
52
+ extract_text_to_fp(file, text_output, laparams=LAParams(), output_type='text')
53
+ return text_output.getvalue(), all_tables
 
 
 
 
 
 
 
 
 
 
 
54
 
55
  def _format_tables_internal(tables):
56
+ formatted = []
 
 
57
  for table in tables:
 
58
  with StringIO() as csvfile:
59
+ writer = csv.writer(csvfile)
60
+ writer.writerows(table)
61
+ formatted.append(csvfile.getvalue())
62
+ return "\n\n".join(formatted)
63
+
64
+ def clean_extracted_text(text):
65
+ return '\n'.join(' '.join(line.strip().split()) for line in text.splitlines() if line.strip())
66
 
67
+ def extract_text_from_docx(path):
 
68
  try:
69
+ doc = docx.Document(path)
70
+ return '\n'.join(p.text for p in doc.paragraphs)
71
+ except:
72
  return ""
73
 
74
+ def load_json_data(path):
75
+ try:
76
+ with open(path, 'r', encoding='utf-8') as f:
77
+ data = json.load(f)
78
+ if isinstance(data, dict):
79
+ return "\n".join(f"{k}: {v}" for k, v in data.items() if not isinstance(v, (dict, list)))
80
+ elif isinstance(data, list):
81
+ return "\n\n".join("\n".join(f"{k}: {v}" for k, v in item.items() if isinstance(item, dict)) for item in data)
82
+ else:
83
+ return json.dumps(data, ensure_ascii=False, indent=2)
84
+ except Exception as e:
85
+ return ""
86
+
87
+ # ---------------- Chunking ----------------
88
+ def chunk_text(text, tokenizer, chunk_size=128, chunk_overlap=32):
89
  tokens = tokenizer.tokenize(text)
90
  chunks = []
91
  start = 0
92
  while start < len(tokens):
93
  end = min(start + chunk_size, len(tokens))
94
+ chunk = tokens[start:end]
95
+ chunks.append(tokenizer.convert_tokens_to_string(chunk))
 
 
 
96
  start += chunk_size - chunk_overlap
97
  return chunks
98
 
99
  def retrieve_chunks(question, index, embed_model, text_chunks, k=3):
100
+ q_embedding = embed_model.encode(question)
101
+ D, I = index.search(np.array([q_embedding]), k)
102
  return [text_chunks[i] for i in I[0]]
103
 
104
+ # ---------------- Groq Answer Generator ----------------
105
  def generate_answer_with_groq(question, context):
106
  url = "https://api.groq.com/openai/v1/chat/completions"
107
+ api_key = os.getenv("GROQ_API_KEY")
108
+ headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
109
+ prompt = f"Customer asked: '{question}'\n\nHere is the relevant information to help:\n{context}"
 
 
 
 
 
 
 
110
  payload = {
111
  "model": "llama3-8b-8192",
112
  "messages": [
113
+ {"role": "system", "content": "You are ToyBot, a friendly WhatsApp assistant..."},
 
 
 
 
 
 
 
114
  {"role": "user", "content": prompt},
115
  ],
116
  "temperature": 0.5,
117
  "max_tokens": 300,
118
  }
119
  response = requests.post(url, headers=headers, json=payload)
 
120
  return response.json()['choices'][0]['message']['content'].strip()
121
 
122
+ # ---------------- Twilio Integration ----------------
123
  def fetch_latest_incoming_message(client, conversation_sid):
124
  try:
125
  messages = client.conversations.v1.conversations(conversation_sid).messages.list()
126
  for msg in reversed(messages):
127
+ if (
128
+ msg.author.startswith("whatsapp:") and
129
+ msg.date_created and
130
+ msg.date_created > APP_START_TIME
131
+ ):
132
  return {
133
  "sid": msg.sid,
134
  "body": msg.body,
135
  "author": msg.author,
136
  "timestamp": msg.date_created,
137
  }
138
+ except TwilioRestException:
139
+ return None
 
 
 
 
 
 
 
 
140
 
141
  def send_twilio_message(client, conversation_sid, body):
142
+ return client.conversations.v1.conversations(conversation_sid).messages.create(author="system", body=body)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
143
 
144
+ def get_latest_whatsapp_conversation_sid(client):
145
+ try:
146
+ conversations = client.conversations.v1.conversations.list(limit=20)
147
+ # Filter conversations created after app start time
148
+ filtered = [
149
+ c for c in conversations
150
+ if c.date_created and c.date_created > APP_START_TIME
151
+ ]
152
+ for convo in sorted(filtered, key=lambda c: c.date_created, reverse=True):
153
+ messages = convo.messages.list(limit=1)
154
+ if messages and any(m.author.startswith("whatsapp:") and m.date_created > APP_START_TIME for m in messages):
155
+ return convo.sid
156
+ except Exception as e:
157
+ print("Error fetching valid conversation SID:", e)
158
+ return None
 
 
 
 
 
 
 
 
 
159
 
160
+ # ---------------- Knowledge Base Setup ----------------
161
+ def setup_knowledge_base():
162
+ folder = "docs"
163
+ text = ""
164
+ for f in os.listdir(folder):
165
+ path = os.path.join(folder, f)
166
+ if f.endswith(".pdf"):
167
+ t, tables = extract_text_from_pdf(path)
168
+ text += clean_extracted_text(t) + "\n" + _format_tables_internal(tables) + "\n"
169
+ elif f.endswith(".docx"):
170
+ text += clean_extracted_text(extract_text_from_docx(path)) + "\n"
171
+ elif f.endswith(".json"):
172
+ text += load_json_data(path) + "\n"
173
+ elif f.endswith(".csv"):
174
+ with open(path, newline='', encoding='utf-8') as csvfile:
175
+ reader = csv.reader(csvfile)
176
+ text += "\n".join(", ".join(row) for row in reader) + "\n"
177
+ return text
178
+
179
+ # ---------------- App Logic ----------------
180
+ def process_messages_loop():
181
+ embed_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
182
+ tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
183
+ knowledge_text = setup_knowledge_base()
184
+ text_chunks = chunk_text(knowledge_text, tokenizer)
185
+ embeddings = embed_model.encode(text_chunks)
186
+ index = faiss.IndexFlatL2(embeddings.shape[1])
187
+ index.add(embeddings)
188
+
189
+ seen_sids = set()
190
+
191
+ while True:
192
+ conversation_sid = get_latest_whatsapp_conversation_sid(twilio_client)
193
+ if not conversation_sid:
194
  time.sleep(5)
195
+ continue
196
 
197
+ message = fetch_latest_incoming_message(twilio_client, conversation_sid)
198
+ if message and message["sid"] not in seen_sids:
199
+ seen_sids.add(message["sid"])
200
+ question = message["body"]
201
+ chunks = retrieve_chunks(question, index, embed_model, text_chunks)
202
+ answer = generate_answer_with_groq(question, "\n\n".join(chunks))
203
+ send_twilio_message(twilio_client, conversation_sid, answer)
 
 
 
 
 
204
 
205
+ time.sleep(5)
 
 
 
 
206
 
207
+ # ---------------- Streamlit UI ----------------
208
+ st.title("ToyShop WhatsApp Assistant (Groq + Twilio)")
 
209
 
210
+ if st.button("Start WhatsApp Bot"):
211
+ thread = threading.Thread(target=process_messages_loop)
212
+ thread.start()
213
+ st.success("WhatsApp assistant started and monitoring for new messages.")