Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -7,6 +7,7 @@ from sentence_transformers import SentenceTransformer
|
|
7 |
import faiss
|
8 |
import numpy as np
|
9 |
from groq import Groq
|
|
|
10 |
|
11 |
# --- Helper Functions ---
|
12 |
|
@@ -25,6 +26,17 @@ def extract_text_from_pdf(pdf_path):
|
|
25 |
st.warning(f"PyPDF2 failed with error: {e}. Trying pdfminer.six...")
|
26 |
return extract_text(pdf_path)
|
27 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
def chunk_text_with_tokenizer(text, tokenizer, chunk_size=150, chunk_overlap=30):
|
29 |
tokens = tokenizer.tokenize(text)
|
30 |
chunks = []
|
@@ -51,9 +63,9 @@ def generate_answer_with_groq(question, context):
|
|
51 |
response = groq_client.chat.completions.create(
|
52 |
model=model_name,
|
53 |
messages=[
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
)
|
58 |
return response.choices[0].message.content
|
59 |
except Exception as e:
|
@@ -73,58 +85,62 @@ if not GROQ_API_KEY:
|
|
73 |
|
74 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
75 |
|
76 |
-
#
|
77 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
78 |
|
79 |
-
# Text input for question
|
80 |
user_question = st.text_input("π¬ Ask your question about SME documents:")
|
81 |
|
82 |
-
|
83 |
-
if
|
84 |
-
|
85 |
-
st.warning("Please upload a PDF file first.")
|
86 |
-
elif not user_question:
|
87 |
-
st.warning("Please enter a question.")
|
88 |
else:
|
89 |
-
with st.spinner("
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
# Extract text
|
96 |
-
pdf_text = extract_text_from_pdf(temp_path)
|
97 |
-
|
98 |
-
# Tokenizer + Chunk
|
99 |
-
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
100 |
-
text_chunks = chunk_text_with_tokenizer(pdf_text, tokenizer)
|
101 |
-
|
102 |
-
# Embeddings
|
103 |
-
embedding_model = SentenceTransformer('all-mpnet-base-v2')
|
104 |
-
all_embeddings = embedding_model.encode(text_chunks) if text_chunks else None
|
105 |
-
|
106 |
-
if all_embeddings is None or len(all_embeddings) == 0:
|
107 |
-
st.error("No text chunks found to create embeddings.")
|
108 |
-
else:
|
109 |
-
# Create FAISS index
|
110 |
-
embedding_dim = all_embeddings[0].shape[0]
|
111 |
-
index = faiss.IndexFlatL2(embedding_dim)
|
112 |
-
index.add(np.array(all_embeddings))
|
113 |
-
|
114 |
-
# Retrieve relevant chunks
|
115 |
-
relevant_chunks = retrieve_relevant_chunks(user_question, index, embedding_model, text_chunks)
|
116 |
-
context = "\n\n".join(relevant_chunks)
|
117 |
-
|
118 |
-
# Generate answer with Groq
|
119 |
-
answer = generate_answer_with_groq(user_question, context)
|
120 |
-
|
121 |
-
# Display outputs
|
122 |
-
#st.markdown("### Extracted Text Snippet:")
|
123 |
-
#st.write(pdf_text[:500] + "...")
|
124 |
-
|
125 |
-
#st.markdown("### Sample Text Chunks:")
|
126 |
-
#for i, chunk in enumerate(text_chunks[:3]):
|
127 |
-
# st.write(f"Chunk {i+1}: {chunk[:200]}...")
|
128 |
-
|
129 |
-
st.markdown("### Answer:")
|
130 |
-
st.success(answer)
|
|
|
7 |
import faiss
|
8 |
import numpy as np
|
9 |
from groq import Groq
|
10 |
+
import docx # to read .docx files
|
11 |
|
12 |
# --- Helper Functions ---
|
13 |
|
|
|
26 |
st.warning(f"PyPDF2 failed with error: {e}. Trying pdfminer.six...")
|
27 |
return extract_text(pdf_path)
|
28 |
|
29 |
+
def extract_text_from_docx(docx_path):
|
30 |
+
try:
|
31 |
+
doc = docx.Document(docx_path)
|
32 |
+
full_text = []
|
33 |
+
for para in doc.paragraphs:
|
34 |
+
full_text.append(para.text)
|
35 |
+
return '\n'.join(full_text)
|
36 |
+
except Exception as e:
|
37 |
+
st.warning(f"Failed to read DOCX {docx_path}: {e}")
|
38 |
+
return ""
|
39 |
+
|
40 |
def chunk_text_with_tokenizer(text, tokenizer, chunk_size=150, chunk_overlap=30):
|
41 |
tokens = tokenizer.tokenize(text)
|
42 |
chunks = []
|
|
|
63 |
response = groq_client.chat.completions.create(
|
64 |
model=model_name,
|
65 |
messages=[
|
66 |
+
{"role": "system", "content": "You are an AI Assistant for Small Businesses. You are an SME expert."},
|
67 |
+
{"role": "user", "content": prompt},
|
68 |
+
]
|
69 |
)
|
70 |
return response.choices[0].message.content
|
71 |
except Exception as e:
|
|
|
85 |
|
86 |
os.environ["GROQ_API_KEY"] = GROQ_API_KEY
|
87 |
|
88 |
+
# Load and process all docs at startup
|
89 |
+
@st.cache_data(show_spinner=True)
|
90 |
+
def load_and_prepare_docs(folder_path="docs"):
|
91 |
+
all_text = ""
|
92 |
+
if not os.path.exists(folder_path):
|
93 |
+
st.error(f"Folder '{folder_path}' does not exist!")
|
94 |
+
return None, None, None
|
95 |
+
|
96 |
+
# Collect all pdf and docx files
|
97 |
+
files = [f for f in os.listdir(folder_path) if f.lower().endswith(('.pdf', '.docx', '.doc'))]
|
98 |
+
if not files:
|
99 |
+
st.error(f"No PDF or DOCX files found in folder '{folder_path}'.")
|
100 |
+
return None, None, None
|
101 |
+
|
102 |
+
for file in files:
|
103 |
+
path = os.path.join(folder_path, file)
|
104 |
+
if file.lower().endswith('.pdf'):
|
105 |
+
text = extract_text_from_pdf(path)
|
106 |
+
elif file.lower().endswith(('.docx', '.doc')):
|
107 |
+
text = extract_text_from_docx(path)
|
108 |
+
else:
|
109 |
+
text = ""
|
110 |
+
if text:
|
111 |
+
all_text += text + "\n\n"
|
112 |
+
|
113 |
+
if not all_text.strip():
|
114 |
+
st.error("No text extracted from documents.")
|
115 |
+
return None, None, None
|
116 |
+
|
117 |
+
tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased')
|
118 |
+
text_chunks = chunk_text_with_tokenizer(all_text, tokenizer)
|
119 |
+
|
120 |
+
embedding_model = SentenceTransformer('all-mpnet-base-v2')
|
121 |
+
all_embeddings = embedding_model.encode(text_chunks) if text_chunks else None
|
122 |
+
|
123 |
+
if all_embeddings is None or len(all_embeddings) == 0:
|
124 |
+
st.error("No text chunks found to create embeddings.")
|
125 |
+
return None, None, None
|
126 |
+
|
127 |
+
embedding_dim = all_embeddings[0].shape[0]
|
128 |
+
index = faiss.IndexFlatL2(embedding_dim)
|
129 |
+
index.add(np.array(all_embeddings))
|
130 |
+
|
131 |
+
return index, embedding_model, text_chunks
|
132 |
+
|
133 |
+
index, embedding_model, text_chunks = load_and_prepare_docs()
|
134 |
|
|
|
135 |
user_question = st.text_input("π¬ Ask your question about SME documents:")
|
136 |
|
137 |
+
if st.button("Get Answer") and user_question:
|
138 |
+
if index is None or embedding_model is None or text_chunks is None:
|
139 |
+
st.error("The document knowledge base is not ready. Please check the errors above.")
|
|
|
|
|
|
|
140 |
else:
|
141 |
+
with st.spinner("Searching for relevant information and generating answer..."):
|
142 |
+
relevant_chunks = retrieve_relevant_chunks(user_question, index, embedding_model, text_chunks)
|
143 |
+
context = "\n\n".join(relevant_chunks)
|
144 |
+
answer = generate_answer_with_groq(user_question, context)
|
145 |
+
st.markdown("### Answer:")
|
146 |
+
st.success(answer)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|