Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -9,39 +9,39 @@ import pandas as pd
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from openai import OpenAI
|
11 |
from dotenv import load_dotenv
|
|
|
12 |
|
13 |
-
# Load
|
14 |
load_dotenv()
|
15 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
16 |
|
17 |
# Setup GROQ LLM client
|
18 |
client = OpenAI(api_key=GROQ_API_KEY, base_url="https://api.groq.com/openai/v1")
|
19 |
|
20 |
-
#
|
21 |
-
|
|
|
|
|
|
|
|
|
22 |
LLM_MODEL = "llama3-8b-8192"
|
23 |
-
embedder = SentenceTransformer(EMBEDDING_MODEL)
|
24 |
|
|
|
25 |
st.set_page_config(page_title="π§Έ ToyShop Assistant", layout="wide")
|
26 |
st.title("π§Έ ToyShop RAG-Based Assistant")
|
27 |
|
28 |
-
# --- Load and process uploaded files ---
|
29 |
-
|
30 |
def extract_pdf_text(file):
|
31 |
text = ""
|
32 |
with pdfplumber.open(file) as pdf:
|
33 |
for page in pdf.pages:
|
34 |
-
|
|
|
|
|
35 |
return text.strip()
|
36 |
|
37 |
def load_json_orders(json_file):
|
38 |
data = json.load(json_file)
|
39 |
-
if isinstance(data, list)
|
40 |
-
return data
|
41 |
-
elif isinstance(data, dict):
|
42 |
-
return list(data.values())
|
43 |
-
else:
|
44 |
-
return []
|
45 |
|
46 |
def build_index(text_chunks):
|
47 |
vectors = embedder.encode(text_chunks)
|
@@ -57,8 +57,7 @@ def ask_llm(context, query):
|
|
57 |
)
|
58 |
return response.choices[0].message.content.strip()
|
59 |
|
60 |
-
#
|
61 |
-
|
62 |
st.subheader("π Upload Customer Orders (JSON)")
|
63 |
orders_file = st.file_uploader("Upload JSON file", type="json")
|
64 |
|
@@ -67,30 +66,28 @@ pdf_files = st.file_uploader("Upload one or more PDFs", type="pdf", accept_multi
|
|
67 |
|
68 |
order_chunks, pdf_chunks = [], []
|
69 |
|
70 |
-
#
|
71 |
-
|
72 |
if orders_file:
|
73 |
try:
|
74 |
orders = load_json_orders(orders_file)
|
75 |
order_chunks = [json.dumps(order, ensure_ascii=False) for order in orders]
|
76 |
-
df = pd.DataFrame(orders)
|
77 |
st.success(f"β
Loaded {len(order_chunks)} customer order records.")
|
78 |
-
st.dataframe(
|
79 |
except Exception as e:
|
80 |
st.error(f"β Error loading JSON: {e}")
|
81 |
|
|
|
82 |
if pdf_files:
|
83 |
for pdf_file in pdf_files:
|
84 |
try:
|
85 |
text = extract_pdf_text(pdf_file)
|
86 |
-
pdf_chunks.extend(text.split("\n\n")) #
|
87 |
except Exception as e:
|
88 |
st.error(f"β Failed to read {pdf_file.name}: {e}")
|
89 |
|
|
|
90 |
combined_chunks = order_chunks + pdf_chunks
|
91 |
|
92 |
-
# --- Question Answering ---
|
93 |
-
|
94 |
if combined_chunks:
|
95 |
index, sources = build_index(combined_chunks)
|
96 |
|
|
|
9 |
from sentence_transformers import SentenceTransformer
|
10 |
from openai import OpenAI
|
11 |
from dotenv import load_dotenv
|
12 |
+
import torch
|
13 |
|
14 |
+
# Load environment variables
|
15 |
load_dotenv()
|
16 |
GROQ_API_KEY = os.getenv("GROQ_API_KEY")
|
17 |
|
18 |
# Setup GROQ LLM client
|
19 |
client = OpenAI(api_key=GROQ_API_KEY, base_url="https://api.groq.com/openai/v1")
|
20 |
|
21 |
+
# Load embedding model with device specification
|
22 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
23 |
+
embedder = SentenceTransformer("all-MiniLM-L6-v2", trust_remote_code=True)
|
24 |
+
embedder.to(device)
|
25 |
+
|
26 |
+
# LLM model name
|
27 |
LLM_MODEL = "llama3-8b-8192"
|
|
|
28 |
|
29 |
+
# Streamlit setup
|
30 |
st.set_page_config(page_title="π§Έ ToyShop Assistant", layout="wide")
|
31 |
st.title("π§Έ ToyShop RAG-Based Assistant")
|
32 |
|
|
|
|
|
33 |
def extract_pdf_text(file):
|
34 |
text = ""
|
35 |
with pdfplumber.open(file) as pdf:
|
36 |
for page in pdf.pages:
|
37 |
+
page_text = page.extract_text()
|
38 |
+
if page_text:
|
39 |
+
text += page_text + "\n"
|
40 |
return text.strip()
|
41 |
|
42 |
def load_json_orders(json_file):
|
43 |
data = json.load(json_file)
|
44 |
+
return data if isinstance(data, list) else list(data.values())
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
def build_index(text_chunks):
|
47 |
vectors = embedder.encode(text_chunks)
|
|
|
57 |
)
|
58 |
return response.choices[0].message.content.strip()
|
59 |
|
60 |
+
# File upload
|
|
|
61 |
st.subheader("π Upload Customer Orders (JSON)")
|
62 |
orders_file = st.file_uploader("Upload JSON file", type="json")
|
63 |
|
|
|
66 |
|
67 |
order_chunks, pdf_chunks = [], []
|
68 |
|
69 |
+
# Handle JSON
|
|
|
70 |
if orders_file:
|
71 |
try:
|
72 |
orders = load_json_orders(orders_file)
|
73 |
order_chunks = [json.dumps(order, ensure_ascii=False) for order in orders]
|
|
|
74 |
st.success(f"β
Loaded {len(order_chunks)} customer order records.")
|
75 |
+
st.dataframe(pd.DataFrame(orders), use_container_width=True)
|
76 |
except Exception as e:
|
77 |
st.error(f"β Error loading JSON: {e}")
|
78 |
|
79 |
+
# Handle PDFs
|
80 |
if pdf_files:
|
81 |
for pdf_file in pdf_files:
|
82 |
try:
|
83 |
text = extract_pdf_text(pdf_file)
|
84 |
+
pdf_chunks.extend(text.split("\n\n")) # simple paragraph chunking
|
85 |
except Exception as e:
|
86 |
st.error(f"β Failed to read {pdf_file.name}: {e}")
|
87 |
|
88 |
+
# Build index if we have content
|
89 |
combined_chunks = order_chunks + pdf_chunks
|
90 |
|
|
|
|
|
91 |
if combined_chunks:
|
92 |
index, sources = build_index(combined_chunks)
|
93 |
|