Spaces:
				
			
			
	
			
			
		Build error
		
	
	
	
			
			
	
	
	
	
		
		
		Build error
		
	| # YOLOv5 π by Ultralytics, GPL-3.0 license | |
| """ | |
| PyTorch Hub models https://pytorch.org/hub/ultralytics_yolov5/ | |
| Usage: | |
| import torch | |
| model = torch.hub.load('ultralytics/yolov5', 'yolov5s') | |
| """ | |
| import torch | |
| def _create(name, pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| """Creates a specified YOLOv5 model | |
| Arguments: | |
| name (str): name of model, i.e. 'yolov5s' | |
| pretrained (bool): load pretrained weights into the model | |
| channels (int): number of input channels | |
| classes (int): number of model classes | |
| autoshape (bool): apply YOLOv5 .autoshape() wrapper to model | |
| verbose (bool): print all information to screen | |
| device (str, torch.device, None): device to use for model parameters | |
| Returns: | |
| YOLOv5 pytorch model | |
| """ | |
| from pathlib import Path | |
| from models.yolo import Model | |
| from models.experimental import attempt_load | |
| from utils.general import check_requirements, set_logging | |
| from utils.downloads import attempt_download | |
| from utils.torch_utils import select_device | |
| file = Path(__file__).resolve() | |
| check_requirements(exclude=('tensorboard', 'thop', 'opencv-python')) | |
| set_logging(verbose=verbose) | |
| save_dir = Path('') if str(name).endswith('.pt') else file.parent | |
| path = (save_dir / name).with_suffix('.pt') # checkpoint path | |
| try: | |
| device = select_device(('0' if torch.cuda.is_available() else 'cpu') if device is None else device) | |
| if pretrained and channels == 3 and classes == 80: | |
| model = attempt_load(path, map_location=device) # download/load FP32 model | |
| else: | |
| cfg = list((Path(__file__).parent / 'models').rglob(f'{name}.yaml'))[0] # model.yaml path | |
| model = Model(cfg, channels, classes) # create model | |
| if pretrained: | |
| ckpt = torch.load(attempt_download(path), map_location=device) # load | |
| msd = model.state_dict() # model state_dict | |
| csd = ckpt['model'].float().state_dict() # checkpoint state_dict as FP32 | |
| csd = {k: v for k, v in csd.items() if msd[k].shape == v.shape} # filter | |
| model.load_state_dict(csd, strict=False) # load | |
| if len(ckpt['model'].names) == classes: | |
| model.names = ckpt['model'].names # set class names attribute | |
| if autoshape: | |
| model = model.autoshape() # for file/URI/PIL/cv2/np inputs and NMS | |
| return model.to(device) | |
| except Exception as e: | |
| help_url = 'https://github.com/ultralytics/yolov5/issues/36' | |
| s = 'Cache may be out of date, try `force_reload=True`. See %s for help.' % help_url | |
| raise Exception(s) from e | |
| def custom(path='path/to/model.pt', autoshape=True, verbose=True, device=None): | |
| # YOLOv5 custom or local model | |
| return _create(path, autoshape=autoshape, verbose=verbose, device=device) | |
| def yolov5n(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-nano model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5n', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5s(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-small model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5s', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5m(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-medium model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5m', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5l(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-large model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5l', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5x(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-xlarge model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5x', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5n6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-nano-P6 model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5n6', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5s6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-small-P6 model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5s6', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5m6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-medium-P6 model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5m6', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5l6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-large-P6 model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5l6', pretrained, channels, classes, autoshape, verbose, device) | |
| def yolov5x6(pretrained=True, channels=3, classes=80, autoshape=True, verbose=True, device=None): | |
| # YOLOv5-xlarge-P6 model https://github.com/ultralytics/yolov5 | |
| return _create('yolov5x6', pretrained, channels, classes, autoshape, verbose, device) | |
| if __name__ == '__main__': | |
| model = _create(name='yolov5s', pretrained=True, channels=3, classes=80, autoshape=True, verbose=True) # pretrained | |
| # model = custom(path='path/to/model.pt') # custom | |
| # Verify inference | |
| import cv2 | |
| import numpy as np | |
| from PIL import Image | |
| from pathlib import Path | |
| imgs = ['data/images/zidane.jpg', # filename | |
| Path('data/images/zidane.jpg'), # Path | |
| 'https://ultralytics.com/images/zidane.jpg', # URI | |
| cv2.imread('data/images/bus.jpg')[:, :, ::-1], # OpenCV | |
| Image.open('data/images/bus.jpg'), # PIL | |
| np.zeros((320, 640, 3))] # numpy | |
| results = model(imgs) # batched inference | |
| results.print() | |
| results.save() | |