Spaces:
mashroo
/
Running on Zero

File size: 9,046 Bytes
f4e8cf6
4932a8f
f4e8cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b723a
 
 
 
 
 
 
 
 
 
 
f4e8cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6b723a
f4e8cf6
 
 
b6b723a
 
 
 
 
8720463
f4e8cf6
b6b723a
f4e8cf6
 
 
4932a8f
f4e8cf6
 
 
 
 
 
 
 
7af4757
1ec230c
7af4757
f4e8cf6
 
a7b40a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e8cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5b89ab
 
 
f4e8cf6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5013a81
f4e8cf6
 
e3cc233
 
 
 
 
 
a7b40a9
f4e8cf6
 
e3cc233
2d4bf78
f4e8cf6
 
2d4bf78
 
 
 
 
 
 
f4e8cf6
2d4bf78
 
 
 
f4e8cf6
2d4bf78
f4e8cf6
2d4bf78
 
 
 
 
 
b6b723a
 
 
2d4bf78
b6b723a
2d4bf78
f4e8cf6
2d4bf78
 
 
 
c2f6e69
f4e8cf6
2d4bf78
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f4e8cf6
2d4bf78
c7c39bf
2d4bf78
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
# Not ready to use yet
import spaces
import argparse
import numpy as np
import gradio as gr
from omegaconf import OmegaConf
import torch
from PIL import Image
import PIL
from pipelines import TwoStagePipeline
from huggingface_hub import hf_hub_download
import os
import rembg
from typing import Any
import json
import os
import json
import argparse

from model import CRM
from inference import generate3d

pipeline = None
rembg_session = rembg.new_session()


def expand_to_square(image, bg_color=(0, 0, 0, 0)):
    # expand image to 1:1
    width, height = image.size
    if width == height:
        return image
    new_size = (max(width, height), max(width, height))
    new_image = Image.new("RGBA", new_size, bg_color)
    paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2)
    new_image.paste(image, paste_position)
    return new_image

def check_input_image(input_image):
    if input_image is None:
        raise gr.Error("No image uploaded!")


def remove_background(
    image: PIL.Image.Image,
    rembg_session: Any = None,
    force: bool = False,
    **rembg_kwargs,
) -> PIL.Image.Image:
    do_remove = True
    if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
        # explain why current do not rm bg
        print("alhpa channl not enpty, skip remove background, using alpha channel as mask")
        background = Image.new("RGBA", image.size, (0, 0, 0, 0))
        image = Image.alpha_composite(background, image)
        do_remove = False
    do_remove = do_remove or force
    if do_remove:
        image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
    return image

def do_resize_content(original_image: Image, scale_rate):
    # resize image content wile retain the original image size
    if scale_rate != 1:
        # Calculate the new size after rescaling
        new_size = tuple(int(dim * scale_rate) for dim in original_image.size)
        # Resize the image while maintaining the aspect ratio
        resized_image = original_image.resize(new_size)
        # Create a new image with the original size and black background
        padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0))
        paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2)
        padded_image.paste(resized_image, paste_position)
        return padded_image
    else:
        return original_image

def add_background(image, bg_color=(255, 255, 255)):
    # given an RGBA image, alpha channel is used as mask to add background color
    background = Image.new("RGBA", image.size, bg_color)
    return Image.alpha_composite(background, image)


def preprocess_image(image, background_choice, foreground_ratio, backgroud_color):
    """
    input image is a pil image in RGBA, return RGB image
    """
    print(background_choice)
    if background_choice == "Alpha as mask":
        background = Image.new("RGBA", image.size, (0, 0, 0, 0))
        image = Image.alpha_composite(background, image)
    else:
        image = remove_background(image, rembg_session, force=True)
    image = do_resize_content(image, foreground_ratio)
    image = expand_to_square(image)
    image = add_background(image, backgroud_color)
    return image.convert("RGB")

@spaces.GPU
def gen_image(input_image, seed, scale, step):
    global pipeline, model, args
    pipeline.set_seed(seed)
    rt_dict = pipeline(input_image, scale=scale, step=step)
    stage1_images = rt_dict["stage1_images"]
    stage2_images = rt_dict["stage2_images"]
    np_imgs = np.concatenate(stage1_images, 1)
    np_xyzs = np.concatenate(stage2_images, 1)

    glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
    return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path#, obj_path


def process_and_generate(input_image, background_choice, foreground_ratio, backgroud_color, seed, scale, step):
    """Process the input image and generate the 3D model in a single function"""
    if input_image is None:
        raise gr.Error("No image uploaded!")
    
    # Preprocess the image
    processed = preprocess_image(input_image, background_choice, foreground_ratio, backgroud_color)
    
    # Generate the 3D model
    pipeline.set_seed(seed)
    rt_dict = pipeline(processed, scale=scale, step=step)
    stage1_images = rt_dict["stage1_images"]
    stage2_images = rt_dict["stage2_images"]
    np_imgs = np.concatenate(stage1_images, 1)
    np_xyzs = np.concatenate(stage2_images, 1)

    glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
    return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path

# Model initialization code
parser = argparse.ArgumentParser()
parser.add_argument(
    "--stage1_config",
    type=str,
    default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
    help="config for stage1",
)
parser.add_argument(
    "--stage2_config",
    type=str,
    default="configs/stage2-v2-snr.yaml",
    help="config for stage2",
)

parser.add_argument("--device", type=str, default="cuda")
args = parser.parse_args()

crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
specs = json.load(open("configs/specs_objaverse_total.json"))
model = CRM(specs)
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
model = model.to(args.device)

stage1_config = OmegaConf.load(args.stage1_config).config
stage2_config = OmegaConf.load(args.stage2_config).config
stage2_sampler_config = stage2_config.sampler
stage1_sampler_config = stage1_config.sampler

stage1_model_config = stage1_config.models
stage2_model_config = stage2_config.models

xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
stage1_model_config.resume = pixel_path
stage2_model_config.resume = xyz_path

pipeline = TwoStagePipeline(
    stage1_model_config,
    stage2_model_config,
    stage1_sampler_config,
    stage2_sampler_config,
    device=args.device,
    dtype=torch.float32
)

_DESCRIPTION = '''
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/
* If you find the output unsatisfying, try using different seeds:)
'''

# Gradio interface
with gr.Blocks() as demo:
    gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
    gr.Markdown(_DESCRIPTION)
    
    with gr.Row():
        with gr.Column():
            image_input = gr.Image(
                label="Image input",
                type="pil",
                image_mode="RGBA",
                sources=["upload"]
            )
            
            with gr.Row():
                background_choice = gr.Radio(
                    choices=["Alpha as mask", "Auto Remove background"],
                    value="Auto Remove background",
                    label="Background choice"
                )
            
            with gr.Row():
                seed = gr.Number(value=1234, label="Seed", precision=0)
                guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="Guidance scale")
                step = gr.Number(value=30, minimum=30, maximum=100, label="Sample steps", precision=0)
            
            generate_btn = gr.Button("Generate 3D shape")
            
            gr.Examples(
                examples=[os.path.join("examples", i) for i in os.listdir("examples")],
                inputs=[image_input],
                examples_per_page=20
            )
        
        with gr.Column():
            image_output = gr.Image(label="Output RGB image", type="pil")
            xyz_output = gr.Image(label="Output CCM image", type="pil")
            output_model = gr.Model3D(label="Output 3D Model")
            
            gr.Markdown("Note: Ensure that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.")

    def process_and_generate_simple(image, seed, scale, step):
        if image is None:
            raise gr.Error("No image uploaded!")
        
        # Use default values for background processing
        processed = preprocess_image(image, "Auto Remove background", 1.0, "#7F7F7F")
        
        # Generate the 3D model
        pipeline.set_seed(seed)
        rt_dict = pipeline(processed, scale=scale, step=step)
        stage1_images = rt_dict["stage1_images"]
        stage2_images = rt_dict["stage2_images"]
        np_imgs = np.concatenate(stage1_images, 1)
        np_xyzs = np.concatenate(stage2_images, 1)

        glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
        return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path

    generate_btn.click(
        fn=process_and_generate_simple,
        inputs=[image_input, seed, guidance_scale, step],
        outputs=[image_output, xyz_output, output_model]
    )

    demo.queue().launch(

    )