Spaces:
mashroo
/
Running on Zero

File size: 3,515 Bytes
d63ad23
 
 
a14c9ce
d454202
 
9ee53e8
854cd53
f6ac519
d454202
d63ad23
 
5777f44
d454202
5777f44
f4e8cf6
dfab55e
a14c9ce
 
dfab55e
 
 
 
 
cb29219
a14c9ce
 
f4e8cf6
dfab55e
f4e8cf6
 
 
dfab55e
 
 
f4e8cf6
 
a14c9ce
 
 
 
 
dfab55e
a14c9ce
 
76eeb7d
cb29219
a14c9ce
 
 
 
 
76eeb7d
f4e8cf6
a14c9ce
 
cb29219
a14c9ce
 
 
dfab55e
 
9ee53e8
 
76eeb7d
f6ac519
 
 
 
 
37c1f6f
 
 
 
 
 
f6ac519
37c1f6f
 
 
 
 
 
f6ac519
dfab55e
9ee53e8
 
 
 
 
 
f6ac519
9ee53e8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import numpy as np
import torch
import time
import tempfile
import zipfile
import nvdiffrast.torch as dr
import xatlas
import cv2
import trimesh

from util.utils import get_tri
from mesh import Mesh
from util.renderer import Renderer
from kiui.mesh_utils import clean_mesh  


def generate3d(model, rgb, ccm, device):
    model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num,
                              scale=model.input.scale, geo_type=model.geo_type)

    color_tri = torch.from_numpy(rgb) / 255
    xyz_tri = torch.from_numpy(ccm[:, :, (2, 1, 0)]) / 255
    color = color_tri.permute(2, 0, 1)
    xyz = xyz_tri.permute(2, 0, 1)

    def get_imgs(color):
        return torch.stack([color[:, :, 256 * i:256 * (i + 1)] for i in [5, 0, 1, 2, 3, 4]], dim=0)

    triplane_color = get_imgs(color).permute(0, 2, 3, 1).unsqueeze(0).to(device)
    color = get_imgs(color)
    xyz = get_imgs(xyz)

    color = get_tri(color, dim=0, blender=True, scale=1).unsqueeze(0)
    xyz = get_tri(xyz, dim=0, blender=True, scale=1, fix=True).unsqueeze(0)
    triplane = torch.cat([color, xyz], dim=1).to(device)

    model.eval()
    if model.denoising:
        tnew = torch.randint(20, 21, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
        noise_new = torch.randn_like(triplane) * 0.5 + 0.5
        triplane = model.scheduler.add_noise(triplane, noise_new, tnew)
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane, tnew)
    else:
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane)

    data_config = {
        'resolution': [1024, 1024],
        "triview_color": triplane_color.to(device),
    }

    with torch.no_grad():
        verts, faces = model.decode(data_config, triplane_feature2)
        data_config['verts'] = verts[0]
        data_config['faces'] = faces

    verts, faces = clean_mesh(
        data_config['verts'].squeeze().cpu().numpy().astype(np.float32),
        data_config['faces'].squeeze().cpu().numpy().astype(np.int32),
        repair=False, remesh=True, remesh_size=0.005, remesh_iters=1
    )
    data_config['verts'] = torch.from_numpy(verts).contiguous()
    data_config['faces'] = torch.from_numpy(faces).contiguous()

    # CPU-only UV unwrapping with xatlas
    mesh_v = data_config['verts'].cpu().numpy()
    mesh_f = data_config['faces'].cpu().numpy()
    vmapping, ft, vt = xatlas.parametrize(mesh_v, mesh_f)

    # Use per-vertex colors if available, else fallback to white
    vertex_colors = np.ones((mesh_v.shape[0], 3), dtype=np.float32)  # fallback: white
    # If you have per-vertex color, you can assign here, e.g.:
    # vertex_colors = ...

    # Bake vertex colors to texture in UV space
    tex_res = (1024, 1024)
    texture = np.zeros((tex_res[1], tex_res[0], 3), dtype=np.float32)
    vt_img = (vt * np.array(tex_res)).astype(np.int32)
    for face, uv_idx in zip(mesh_f, ft):
        pts = vt_img[uv_idx]
        color = vertex_colors[face].mean(axis=0)
        cv2.fillPoly(texture, [pts], color.tolist())
    texture = np.clip(texture, 0, 1)

    # Create Mesh and export .glb
    mesh = Mesh(
        v=torch.from_numpy(mesh_v).float(),
        f=torch.from_numpy(mesh_f).int(),
        vt=torch.from_numpy(vt).float(),
        ft=torch.from_numpy(ft).int(),
        albedo=torch.from_numpy(texture).float()
    )
    temp_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False).name
    mesh.write(temp_path)
    return temp_path