Spaces:
mashroo
/
Runtime error

File size: 3,125 Bytes
d63ad23
 
 
a14c9ce
d454202
 
9ee53e8
d454202
d63ad23
 
5777f44
d454202
5777f44
f4e8cf6
dfab55e
a14c9ce
 
dfab55e
 
 
 
 
cb29219
a14c9ce
 
f4e8cf6
dfab55e
f4e8cf6
 
 
dfab55e
 
 
f4e8cf6
 
a14c9ce
 
 
 
 
dfab55e
a14c9ce
 
76eeb7d
cb29219
a14c9ce
 
 
 
 
76eeb7d
f4e8cf6
a14c9ce
 
cb29219
a14c9ce
 
 
dfab55e
 
9ee53e8
 
76eeb7d
9ee53e8
 
 
 
76eeb7d
9ee53e8
 
 
 
dfab55e
9ee53e8
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
import numpy as np
import torch
import time
import tempfile
import zipfile
import nvdiffrast.torch as dr
import xatlas

from util.utils import get_tri
from mesh import Mesh
from util.renderer import Renderer
from kiui.mesh_utils import clean_mesh  


def generate3d(model, rgb, ccm, device):
    model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num,
                              scale=model.input.scale, geo_type=model.geo_type)

    color_tri = torch.from_numpy(rgb) / 255
    xyz_tri = torch.from_numpy(ccm[:, :, (2, 1, 0)]) / 255
    color = color_tri.permute(2, 0, 1)
    xyz = xyz_tri.permute(2, 0, 1)

    def get_imgs(color):
        return torch.stack([color[:, :, 256 * i:256 * (i + 1)] for i in [5, 0, 1, 2, 3, 4]], dim=0)

    triplane_color = get_imgs(color).permute(0, 2, 3, 1).unsqueeze(0).to(device)
    color = get_imgs(color)
    xyz = get_imgs(xyz)

    color = get_tri(color, dim=0, blender=True, scale=1).unsqueeze(0)
    xyz = get_tri(xyz, dim=0, blender=True, scale=1, fix=True).unsqueeze(0)
    triplane = torch.cat([color, xyz], dim=1).to(device)

    model.eval()
    if model.denoising:
        tnew = torch.randint(20, 21, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
        noise_new = torch.randn_like(triplane) * 0.5 + 0.5
        triplane = model.scheduler.add_noise(triplane, noise_new, tnew)
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane, tnew)
    else:
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane)

    data_config = {
        'resolution': [1024, 1024],
        "triview_color": triplane_color.to(device),
    }

    with torch.no_grad():
        verts, faces = model.decode(data_config, triplane_feature2)
        data_config['verts'] = verts[0]
        data_config['faces'] = faces

    verts, faces = clean_mesh(
        data_config['verts'].squeeze().cpu().numpy().astype(np.float32),
        data_config['faces'].squeeze().cpu().numpy().astype(np.int32),
        repair=False, remesh=True, remesh_size=0.005, remesh_iters=1
    )
    data_config['verts'] = torch.from_numpy(verts).contiguous()
    data_config['faces'] = torch.from_numpy(faces).contiguous()

    # Generate UVs using xatlas (CPU)
    mesh_v = data_config['verts'].cpu().numpy()
    mesh_f = data_config['faces'].cpu().numpy()
    vmapping, ft, vt = xatlas.parametrize(mesh_v, mesh_f)

    # Bake texture (simulate what export_mesh_wt_uv does, but CPU-only)
    # Here, we just fill with white for demo; replace with your actual texture baking logic
    tex_res = (1024, 1024)
    albedo = np.ones((tex_res[0], tex_res[1], 3), dtype=np.float32)  # TODO: bake your texture here

    # Create Mesh and export .glb
    mesh = Mesh(
        v=torch.from_numpy(mesh_v).float(),
        f=torch.from_numpy(mesh_f).int(),
        vt=torch.from_numpy(vt).float(),
        ft=torch.from_numpy(ft).int(),
        albedo=torch.from_numpy(albedo).float()
    )
    temp_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False).name
    mesh.write(temp_path)
    return temp_path