Spaces:
mashroo
/
Runtime error

File size: 2,648 Bytes
a14c9ce
76eeb7d
a14c9ce
 
 
 
f4e8cf6
dfab55e
a14c9ce
 
dfab55e
 
 
 
 
cb29219
a14c9ce
 
f4e8cf6
dfab55e
f4e8cf6
 
 
dfab55e
 
 
f4e8cf6
 
a14c9ce
 
 
 
 
dfab55e
a14c9ce
 
76eeb7d
cb29219
a14c9ce
 
 
 
 
76eeb7d
f4e8cf6
a14c9ce
 
cb29219
a14c9ce
 
 
dfab55e
 
a14c9ce
 
76eeb7d
a14c9ce
 
 
76eeb7d
a14c9ce
 
 
 
 
76eeb7d
a14c9ce
 
 
dfab55e
a14c9ce
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
from kiui.mesh_utils import clean_mesh
import trimesh
import zipfile
import tempfile
import os
import nvdiffrast.torch as dr

def generate3d(model, rgb, ccm, device):
    model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num,
                              scale=model.input.scale, geo_type=model.geo_type)

    color_tri = torch.from_numpy(rgb) / 255
    xyz_tri = torch.from_numpy(ccm[:, :, (2, 1, 0)]) / 255
    color = color_tri.permute(2, 0, 1)
    xyz = xyz_tri.permute(2, 0, 1)

    def get_imgs(color):
        return torch.stack([color[:, :, 256 * i:256 * (i + 1)] for i in [5, 0, 1, 2, 3, 4]], dim=0)

    triplane_color = get_imgs(color).permute(0, 2, 3, 1).unsqueeze(0).to(device)
    color = get_imgs(color)
    xyz = get_imgs(xyz)

    color = get_tri(color, dim=0, blender=True, scale=1).unsqueeze(0)
    xyz = get_tri(xyz, dim=0, blender=True, scale=1, fix=True).unsqueeze(0)
    triplane = torch.cat([color, xyz], dim=1).to(device)

    model.eval()
    if model.denoising:
        tnew = torch.randint(20, 21, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
        noise_new = torch.randn_like(triplane) * 0.5 + 0.5
        triplane = model.scheduler.add_noise(triplane, noise_new, tnew)
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane, tnew)
    else:
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane)

    data_config = {
        'resolution': [1024, 1024],
        "triview_color": triplane_color.to(device),
    }

    with torch.no_grad():
        verts, faces = model.decode(data_config, triplane_feature2)
        data_config['verts'] = verts[0]
        data_config['faces'] = faces

    verts, faces = clean_mesh(
        data_config['verts'].squeeze().cpu().numpy().astype(np.float32),
        data_config['faces'].squeeze().cpu().numpy().astype(np.int32),
        repair=False, remesh=True, remesh_size=0.005, remesh_iters=1
    )
    data_config['verts'] = torch.from_numpy(verts).cuda().contiguous()
    data_config['faces'] = torch.from_numpy(faces).cuda().contiguous()

    # Create base filename
    temp_path = tempfile.NamedTemporaryFile(suffix="", delete=False).name
    obj_base = temp_path  # no extension

    # Export mesh with UV and PNG
    glctx = dr.RasterizeCudaContext()
    model.export_mesh_wt_uv(
        glctx, data_config, obj_base, "", device, res=(1024, 1024), tri_fea_2=triplane_feature2
    )

    # Load .obj with texture and export .glb
    mesh = trimesh.load(obj_base + ".obj", process=False)
    mesh.export(obj_base + ".glb")

    return obj_base + ".glb"