Spaces:
mashroo
/
Runtime error

File size: 3,811 Bytes
d63ad23
 
 
a14c9ce
d454202
 
9ee53e8
854cd53
d454202
d63ad23
 
5777f44
d454202
5777f44
f4e8cf6
dfab55e
a14c9ce
 
dfab55e
 
 
 
 
cb29219
a14c9ce
 
f4e8cf6
dfab55e
f4e8cf6
 
 
dfab55e
 
 
f4e8cf6
 
a14c9ce
 
 
 
 
dfab55e
a14c9ce
 
76eeb7d
cb29219
a14c9ce
 
 
 
 
76eeb7d
f4e8cf6
a14c9ce
 
cb29219
a14c9ce
 
 
dfab55e
 
9ee53e8
 
76eeb7d
e666402
 
 
 
 
 
 
 
 
 
 
854cd53
 
 
 
e666402
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dfab55e
9ee53e8
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import torch
import time
import tempfile
import zipfile
import nvdiffrast.torch as dr
import xatlas
import cv2

from util.utils import get_tri
from mesh import Mesh
from util.renderer import Renderer
from kiui.mesh_utils import clean_mesh  


def generate3d(model, rgb, ccm, device):
    model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num,
                              scale=model.input.scale, geo_type=model.geo_type)

    color_tri = torch.from_numpy(rgb) / 255
    xyz_tri = torch.from_numpy(ccm[:, :, (2, 1, 0)]) / 255
    color = color_tri.permute(2, 0, 1)
    xyz = xyz_tri.permute(2, 0, 1)

    def get_imgs(color):
        return torch.stack([color[:, :, 256 * i:256 * (i + 1)] for i in [5, 0, 1, 2, 3, 4]], dim=0)

    triplane_color = get_imgs(color).permute(0, 2, 3, 1).unsqueeze(0).to(device)
    color = get_imgs(color)
    xyz = get_imgs(xyz)

    color = get_tri(color, dim=0, blender=True, scale=1).unsqueeze(0)
    xyz = get_tri(xyz, dim=0, blender=True, scale=1, fix=True).unsqueeze(0)
    triplane = torch.cat([color, xyz], dim=1).to(device)

    model.eval()
    if model.denoising:
        tnew = torch.randint(20, 21, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
        noise_new = torch.randn_like(triplane) * 0.5 + 0.5
        triplane = model.scheduler.add_noise(triplane, noise_new, tnew)
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane, tnew)
    else:
        with torch.no_grad():
            triplane_feature2 = model.unet2(triplane)

    data_config = {
        'resolution': [1024, 1024],
        "triview_color": triplane_color.to(device),
    }

    with torch.no_grad():
        verts, faces = model.decode(data_config, triplane_feature2)
        data_config['verts'] = verts[0]
        data_config['faces'] = faces

    verts, faces = clean_mesh(
        data_config['verts'].squeeze().cpu().numpy().astype(np.float32),
        data_config['faces'].squeeze().cpu().numpy().astype(np.int32),
        repair=False, remesh=True, remesh_size=0.005, remesh_iters=1
    )
    data_config['verts'] = torch.from_numpy(verts).contiguous()
    data_config['faces'] = torch.from_numpy(faces).contiguous()

    # --- CCM-based UV assignment ---
    mesh_v = data_config['verts'].cpu().numpy()  # [N, 3]
    mesh_f = data_config['faces'].cpu().numpy()  # [M, 3]

    # Prepare CCM and color map
    ccm_img = ccm.astype(np.uint8) if ccm.max() > 1 else (ccm * 255).astype(np.uint8)
    if ccm_img.shape[-1] != 3:
        ccm_img = np.transpose(ccm_img, (1, 2, 0))
    H, W, _ = ccm_img.shape

    color_map = rgb.astype(np.uint8) if rgb.max() > 1 else (rgb * 255).astype(np.uint8)
    if color_map.shape[-1] != 3:
        color_map = np.transpose(color_map, (1, 2, 0))
    albedo = cv2.cvtColor(color_map, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0

    # Project mesh vertices to CCM image space and get UVs
    vt = []
    for v in mesh_v:
        # Assume mesh is in [-1,1] in x/y, project to CCM image
        x, y, z = v
        u_img = int((x + 1) / 2 * (W - 1))
        v_img = int((y + 1) / 2 * (H - 1))
        u_img = np.clip(u_img, 0, W-1)
        v_img = np.clip(v_img, 0, H-1)
        r, g, b = ccm_img[v_img, u_img]
        u = r / 255.0
        v_ = g / 255.0
        vt.append([u, v_])
    vt = np.array(vt, dtype=np.float32)
    ft = mesh_f.copy()

    # Create Mesh and export .glb
    mesh = Mesh(
        v=torch.from_numpy(mesh_v).float(),
        f=torch.from_numpy(mesh_f).int(),
        vt=torch.from_numpy(vt).float(),
        ft=torch.from_numpy(ft).int(),
        albedo=torch.from_numpy(albedo).float()
    )
    temp_path = tempfile.NamedTemporaryFile(suffix=".glb", delete=False).name
    mesh.write(temp_path)
    return temp_path