Refactor Gradio interface in app.py to enhance layout and usability, including updates to image input settings, background choice options, and button functionality for generating 3D shapes. Streamlined processing function connections for improved clarity.
50e2279
# Fixed version with proper error handling and compatibility | |
import spaces | |
import argparse | |
import numpy as np | |
import gradio as gr | |
from omegaconf import OmegaConf | |
import torch | |
from PIL import Image | |
import PIL | |
from pipelines import TwoStagePipeline | |
from huggingface_hub import hf_hub_download | |
import os | |
import rembg | |
from typing import Any | |
import json | |
import os | |
import json | |
import argparse | |
from model import CRM | |
from inference import generate3d | |
# Move model initialization into a function that will be called by workers | |
def init_model(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--stage1_config", | |
type=str, | |
default="configs/nf7_v3_SNR_rd_size_stroke.yaml", | |
help="config for stage1", | |
) | |
parser.add_argument( | |
"--stage2_config", | |
type=str, | |
default="configs/stage2-v2-snr.yaml", | |
help="config for stage2", | |
) | |
parser.add_argument("--device", type=str, default="cuda") | |
args = parser.parse_args(args=[]) # Fix: provide empty args list | |
# Download model files | |
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth") | |
specs = json.load(open("configs/specs_objaverse_total.json")) | |
model = CRM(specs) | |
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False) | |
model = model.to(args.device) | |
# Load configs | |
stage1_config = OmegaConf.load(args.stage1_config).config | |
stage2_config = OmegaConf.load(args.stage2_config).config | |
stage2_sampler_config = stage2_config.sampler | |
stage1_sampler_config = stage1_config.sampler | |
stage1_model_config = stage1_config.models | |
stage2_model_config = stage2_config.models | |
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth") | |
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth") | |
stage1_model_config.resume = pixel_path | |
stage2_model_config.resume = xyz_path | |
pipeline = TwoStagePipeline( | |
stage1_model_config, | |
stage2_model_config, | |
stage1_sampler_config, | |
stage2_sampler_config, | |
device=args.device, | |
dtype=torch.float32 | |
) | |
return model, pipeline, args | |
# Global variables to store model and pipeline | |
model = None | |
pipeline = None | |
args = None | |
def get_model(): | |
"""Lazy initialization of model and pipeline""" | |
global model, pipeline, args | |
if model is None or pipeline is None: | |
model, pipeline, args = init_model() | |
return model, pipeline | |
rembg_session = rembg.new_session() | |
def expand_to_square(image, bg_color=(0, 0, 0, 0)): | |
# expand image to 1:1 | |
width, height = image.size | |
if width == height: | |
return image | |
new_size = (max(width, height), max(width, height)) | |
new_image = Image.new("RGBA", new_size, bg_color) | |
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) | |
new_image.paste(image, paste_position) | |
return new_image | |
def check_input_image(input_image): | |
"""Check if the input image is valid""" | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
return input_image | |
def remove_background( | |
image: PIL.Image.Image, | |
rembg_session: Any = None, | |
force: bool = False, | |
**rembg_kwargs, | |
) -> PIL.Image.Image: | |
do_remove = True | |
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: | |
# explain why current do not rm bg | |
print("alpha channel not empty, skip remove background, using alpha channel as mask") | |
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) | |
image = Image.alpha_composite(background, image) | |
do_remove = False | |
do_remove = do_remove or force | |
if do_remove: | |
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) | |
return image | |
def do_resize_content(original_image: Image, scale_rate): | |
# resize image content while retaining the original image size | |
if scale_rate != 1: | |
# Calculate the new size after rescaling | |
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) | |
# Resize the image while maintaining the aspect ratio | |
resized_image = original_image.resize(new_size) | |
# Create a new image with the original size and black background | |
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) | |
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) | |
padded_image.paste(resized_image, paste_position) | |
return padded_image | |
else: | |
return original_image | |
def add_background(image, bg_color=(255, 255, 255)): | |
# given an RGBA image, alpha channel is used as mask to add background color | |
background = Image.new("RGBA", image.size, bg_color) | |
return Image.alpha_composite(background, image) | |
def add_random_background(image, color): | |
# Add a random background to the image | |
width, height = image.size | |
background = Image.new("RGBA", image.size, color) | |
return Image.alpha_composite(background, image) | |
def preprocess_image(input_image, background_choice, foreground_ratio, back_ground_color): | |
"""Preprocess the input image""" | |
try: | |
# Check if image is provided | |
if input_image is None: | |
raise gr.Error("No image uploaded!") | |
# Convert to PIL Image if needed | |
if isinstance(input_image, np.ndarray): | |
input_image = Image.fromarray(input_image) | |
# Ensure RGBA mode | |
if input_image.mode != "RGBA": | |
input_image = input_image.convert("RGBA") | |
# Process background | |
if background_choice == "Auto Remove background": | |
input_image = remove_background(input_image, rembg_session) | |
elif background_choice == "Custom Background": | |
input_image = add_random_background(input_image, back_ground_color) | |
# Resize content if needed | |
if foreground_ratio != 1.0: | |
input_image = do_resize_content(input_image, foreground_ratio) | |
return input_image | |
except Exception as e: | |
print(f"Error in preprocess_image: {str(e)}") | |
raise gr.Error(f"Preprocessing failed: {str(e)}") | |
def gen_image(processed_image, seed, scale, step): | |
"""Generate the 3D model""" | |
try: | |
# Get model and pipeline when needed | |
model, pipeline = get_model() | |
# Check if image is provided | |
if processed_image is None: | |
raise gr.Error("No processed image provided!") | |
# Convert to numpy array | |
if isinstance(processed_image, Image.Image): | |
np_image = np.array(processed_image) | |
else: | |
np_image = processed_image | |
# Set random seed | |
torch.manual_seed(int(seed)) | |
np.random.seed(int(seed)) | |
# Generate images | |
np_imgs, np_xyzs = pipeline.generate( | |
np_image, | |
guidance_scale=float(scale), | |
num_inference_steps=int(step) | |
) | |
# Generate 3D model | |
glb_path = generate3d(model, np_imgs, np_xyzs, args.device) | |
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path | |
except Exception as e: | |
print(f"Error in gen_image: {str(e)}") | |
raise gr.Error(f"Generation failed: {str(e)}") | |
def process_and_generate(image, bg_choice, fg_ratio, bg_color, seed_val, guidance, steps): | |
"""Combined function to process image and generate 3D model""" | |
try: | |
if image is None: | |
raise gr.Error("No image uploaded!") | |
# Preprocess the image | |
processed = preprocess_image(image, bg_choice, fg_ratio, bg_color) | |
# Generate 3D model | |
rgb_img, ccm_img, glb_file = gen_image(processed, seed_val, guidance, steps) | |
return processed, rgb_img, ccm_img, glb_file | |
except Exception as e: | |
print(f"Error in process_and_generate: {str(e)}") | |
raise gr.Error(f"Process failed: {str(e)}") | |
_DESCRIPTION = ''' | |
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo. | |
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/ | |
* If you find the output unsatisfying, try using different seeds:) | |
''' | |
# Create the Gradio interface | |
with gr.Blocks() as demo: | |
gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model") | |
gr.Markdown(_DESCRIPTION) | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
image_input = gr.Image( | |
label="Image input", | |
image_mode="RGBA", | |
sources="upload", | |
type="pil", | |
) | |
processed_image = gr.Image(label="Processed Image", interactive=False, type="pil", image_mode="RGB") | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Row(): | |
background_choice = gr.Radio([ | |
"Alpha as mask", | |
"Auto Remove background" | |
], value="Auto Remove background", | |
label="Background choice") | |
back_ground_color = gr.ColorPicker(label="Background Color", value="#7F7F7F", interactive=False) | |
foreground_ratio = gr.Slider( | |
label="Foreground Ratio", | |
minimum=0.5, | |
maximum=1.0, | |
value=1.0, | |
step=0.05, | |
) | |
with gr.Column(): | |
seed = gr.Number(value=1234, label="Seed", precision=0) | |
guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="Guidance scale") | |
step = gr.Number(value=30, minimum=30, maximum=100, label="Sample steps", precision=0) | |
text_button = gr.Button("Generate 3D shape") | |
if os.path.exists("examples") and os.listdir("examples"): | |
gr.Examples( | |
examples=[os.path.join("examples", i) for i in os.listdir("examples") if i.lower().endswith(('.png', '.jpg', '.jpeg'))], | |
inputs=[image_input], | |
examples_per_page=20, | |
) | |
with gr.Column(): | |
image_output = gr.Image(interactive=False, label="Output RGB image") | |
xyz_output = gr.Image(interactive=False, label="Output CCM image") | |
output_model = gr.Model3D( | |
label="Output GLB", | |
interactive=False, | |
) | |
gr.Markdown("Note: Ensure that the input image is correctly pre-processed into a grey background, otherwise the results will be unpredictable.") | |
inputs = [ | |
processed_image, | |
seed, | |
guidance_scale, | |
step, | |
] | |
outputs = [ | |
image_output, | |
xyz_output, | |
output_model, | |
] | |
text_button.click(fn=check_input_image, inputs=[image_input]).success( | |
fn=preprocess_image, | |
inputs=[image_input, background_choice, foreground_ratio, back_ground_color], | |
outputs=[processed_image], | |
).success( | |
fn=gen_image, | |
inputs=inputs, | |
outputs=outputs, | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |