|
from kiui.mesh_utils import clean_mesh |
|
import trimesh |
|
import zipfile |
|
import tempfile |
|
import os |
|
import nvdiffrast.torch as dr |
|
from util.renderer import Renderer |
|
|
|
|
|
def generate3d(model, rgb, ccm, device): |
|
model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num, |
|
scale=model.input.scale, geo_type=model.geo_type) |
|
|
|
color_tri = torch.from_numpy(rgb) / 255 |
|
xyz_tri = torch.from_numpy(ccm[:, :, (2, 1, 0)]) / 255 |
|
color = color_tri.permute(2, 0, 1) |
|
xyz = xyz_tri.permute(2, 0, 1) |
|
|
|
def get_imgs(color): |
|
return torch.stack([color[:, :, 256 * i:256 * (i + 1)] for i in [5, 0, 1, 2, 3, 4]], dim=0) |
|
|
|
triplane_color = get_imgs(color).permute(0, 2, 3, 1).unsqueeze(0).to(device) |
|
color = get_imgs(color) |
|
xyz = get_imgs(xyz) |
|
|
|
color = get_tri(color, dim=0, blender=True, scale=1).unsqueeze(0) |
|
xyz = get_tri(xyz, dim=0, blender=True, scale=1, fix=True).unsqueeze(0) |
|
triplane = torch.cat([color, xyz], dim=1).to(device) |
|
|
|
model.eval() |
|
if model.denoising: |
|
tnew = torch.randint(20, 21, [triplane.shape[0]], dtype=torch.long, device=triplane.device) |
|
noise_new = torch.randn_like(triplane) * 0.5 + 0.5 |
|
triplane = model.scheduler.add_noise(triplane, noise_new, tnew) |
|
with torch.no_grad(): |
|
triplane_feature2 = model.unet2(triplane, tnew) |
|
else: |
|
with torch.no_grad(): |
|
triplane_feature2 = model.unet2(triplane) |
|
|
|
data_config = { |
|
'resolution': [1024, 1024], |
|
"triview_color": triplane_color.to(device), |
|
} |
|
|
|
with torch.no_grad(): |
|
verts, faces = model.decode(data_config, triplane_feature2) |
|
data_config['verts'] = verts[0] |
|
data_config['faces'] = faces |
|
|
|
verts, faces = clean_mesh( |
|
data_config['verts'].squeeze().cpu().numpy().astype(np.float32), |
|
data_config['faces'].squeeze().cpu().numpy().astype(np.int32), |
|
repair=False, remesh=True, remesh_size=0.005, remesh_iters=1 |
|
) |
|
data_config['verts'] = torch.from_numpy(verts).cuda().contiguous() |
|
data_config['faces'] = torch.from_numpy(faces).cuda().contiguous() |
|
|
|
|
|
temp_path = tempfile.NamedTemporaryFile(suffix="", delete=False).name |
|
obj_base = temp_path |
|
|
|
|
|
glctx = dr.RasterizeCudaContext() |
|
model.export_mesh_wt_uv( |
|
glctx, data_config, obj_base, "", device, res=(1024, 1024), tri_fea_2=triplane_feature2 |
|
) |
|
|
|
|
|
mesh = trimesh.load(obj_base + ".obj", process=False) |
|
mesh.export(obj_base + ".glb") |
|
|
|
return obj_base + ".glb" |
|
|