|
|
|
import spaces |
|
import argparse |
|
import numpy as np |
|
import gradio as gr |
|
from omegaconf import OmegaConf |
|
import torch |
|
from PIL import Image |
|
import PIL |
|
from pipelines import TwoStagePipeline |
|
from huggingface_hub import hf_hub_download |
|
import os |
|
import rembg |
|
from typing import Any |
|
import json |
|
import os |
|
import json |
|
import argparse |
|
|
|
from model import CRM |
|
from inference import generate3d |
|
|
|
|
|
def init_model(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument( |
|
"--stage1_config", |
|
type=str, |
|
default="configs/nf7_v3_SNR_rd_size_stroke.yaml", |
|
help="config for stage1", |
|
) |
|
parser.add_argument( |
|
"--stage2_config", |
|
type=str, |
|
default="configs/stage2-v2-snr.yaml", |
|
help="config for stage2", |
|
) |
|
parser.add_argument("--device", type=str, default="cuda") |
|
args = parser.parse_args() |
|
|
|
|
|
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth") |
|
specs = json.load(open("configs/specs_objaverse_total.json")) |
|
model = CRM(specs) |
|
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False) |
|
model = model.to(args.device) |
|
|
|
|
|
stage1_config = OmegaConf.load(args.stage1_config).config |
|
stage2_config = OmegaConf.load(args.stage2_config).config |
|
stage2_sampler_config = stage2_config.sampler |
|
stage1_sampler_config = stage1_config.sampler |
|
|
|
stage1_model_config = stage1_config.models |
|
stage2_model_config = stage2_config.models |
|
|
|
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth") |
|
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth") |
|
stage1_model_config.resume = pixel_path |
|
stage2_model_config.resume = xyz_path |
|
|
|
pipeline = TwoStagePipeline( |
|
stage1_model_config, |
|
stage2_model_config, |
|
stage1_sampler_config, |
|
stage2_sampler_config, |
|
device=args.device, |
|
dtype=torch.float32 |
|
) |
|
|
|
return model, pipeline, args |
|
|
|
|
|
model = None |
|
pipeline = None |
|
|
|
@spaces.GPU |
|
def get_model(): |
|
"""Lazy initialization of model and pipeline""" |
|
global model, pipeline, args |
|
if model is None or pipeline is None: |
|
model, pipeline, args = init_model() |
|
return model, pipeline |
|
|
|
rembg_session = rembg.new_session() |
|
|
|
|
|
def expand_to_square(image, bg_color=(0, 0, 0, 0)): |
|
|
|
width, height = image.size |
|
if width == height: |
|
return image |
|
new_size = (max(width, height), max(width, height)) |
|
new_image = Image.new("RGBA", new_size, bg_color) |
|
paste_position = ((new_size[0] - width) // 2, (new_size[1] - height) // 2) |
|
new_image.paste(image, paste_position) |
|
return new_image |
|
|
|
def check_input_image(input_image): |
|
"""Check if the input image is valid""" |
|
if input_image is None: |
|
raise gr.Error("No image uploaded!") |
|
return input_image |
|
|
|
def remove_background( |
|
image: PIL.Image.Image, |
|
rembg_session: Any = None, |
|
force: bool = False, |
|
**rembg_kwargs, |
|
) -> PIL.Image.Image: |
|
do_remove = True |
|
if image.mode == "RGBA" and image.getextrema()[3][0] < 255: |
|
|
|
print("alhpa channl not enpty, skip remove background, using alpha channel as mask") |
|
background = Image.new("RGBA", image.size, (0, 0, 0, 0)) |
|
image = Image.alpha_composite(background, image) |
|
do_remove = False |
|
do_remove = do_remove or force |
|
if do_remove: |
|
image = rembg.remove(image, session=rembg_session, **rembg_kwargs) |
|
return image |
|
|
|
def do_resize_content(original_image: Image, scale_rate): |
|
|
|
if scale_rate != 1: |
|
|
|
new_size = tuple(int(dim * scale_rate) for dim in original_image.size) |
|
|
|
resized_image = original_image.resize(new_size) |
|
|
|
padded_image = Image.new("RGBA", original_image.size, (0, 0, 0, 0)) |
|
paste_position = ((original_image.width - resized_image.width) // 2, (original_image.height - resized_image.height) // 2) |
|
padded_image.paste(resized_image, paste_position) |
|
return padded_image |
|
else: |
|
return original_image |
|
|
|
def add_background(image, bg_color=(255, 255, 255)): |
|
|
|
background = Image.new("RGBA", image.size, bg_color) |
|
return Image.alpha_composite(background, image) |
|
|
|
def add_random_background(image, color): |
|
|
|
width, height = image.size |
|
background = Image.new("RGBA", image.size, color) |
|
return Image.alpha_composite(background, image) |
|
|
|
@spaces.GPU |
|
def preprocess_image(input_image, background_choice, foreground_ratio, back_groud_color): |
|
"""Preprocess the input image""" |
|
try: |
|
|
|
model, pipeline = get_model() |
|
|
|
|
|
np_image = np.array(input_image) |
|
|
|
|
|
if background_choice == "Remove Background": |
|
np_image = rembg.remove(np_image, session=rembg_session) |
|
elif background_choice == "Custom Background": |
|
np_image = add_random_background(np_image, back_groud_color) |
|
|
|
|
|
if foreground_ratio != 1.0: |
|
np_image = do_resize_content(Image.fromarray(np_image), foreground_ratio) |
|
np_image = np.array(np_image) |
|
|
|
return Image.fromarray(np_image) |
|
except Exception as e: |
|
print(f"Error in preprocess_image: {str(e)}") |
|
raise e |
|
|
|
@spaces.GPU |
|
def gen_image(processed_image, seed, scale, step): |
|
"""Generate the 3D model""" |
|
try: |
|
|
|
model, pipeline = get_model() |
|
|
|
|
|
np_image = np.array(processed_image) |
|
|
|
|
|
torch.manual_seed(seed) |
|
np.random.seed(seed) |
|
|
|
|
|
np_imgs, np_xyzs = pipeline.generate( |
|
np_image, |
|
guidance_scale=scale, |
|
num_inference_steps=step |
|
) |
|
|
|
|
|
glb_path = generate3d(model, np_imgs, np_xyzs, args.device) |
|
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path |
|
except Exception as e: |
|
print(f"Error in gen_image: {str(e)}") |
|
raise e |
|
|
|
_DESCRIPTION = ''' |
|
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo. |
|
* Project page of CRM: https://ml.cs.tsinghua.edu.cn/~zhengyi/CRM/ |
|
* If you find the output unsatisfying, try using different seeds:) |
|
''' |
|
|
|
|
|
with gr.Blocks(title="CRM: 3D Character Generation from Single Image") as demo: |
|
gr.Markdown(_DESCRIPTION) |
|
|
|
with gr.Row(): |
|
with gr.Column(): |
|
input_image = gr.Image(label="Input Image", type="pil") |
|
background_choice = gr.Radio( |
|
choices=["Remove Background", "Custom Background"], |
|
value="Remove Background", |
|
label="Background Option" |
|
) |
|
foreground_ratio = gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=1.0, |
|
step=0.1, |
|
label="Foreground Ratio" |
|
) |
|
back_groud_color = gr.ColorPicker( |
|
label="Background Color", |
|
value="#FFFFFF" |
|
) |
|
seed = gr.Number( |
|
label="Seed", |
|
value=42, |
|
precision=0 |
|
) |
|
scale = gr.Slider( |
|
minimum=1.0, |
|
maximum=20.0, |
|
value=7.5, |
|
step=0.1, |
|
label="Guidance Scale" |
|
) |
|
step = gr.Slider( |
|
minimum=1, |
|
maximum=100, |
|
value=50, |
|
step=1, |
|
label="Steps" |
|
) |
|
generate_btn = gr.Button("Generate 3D Model") |
|
|
|
with gr.Column(): |
|
processed_image = gr.Image(label="Processed Image", type="pil") |
|
output_image = gr.Image(label="Generated Image", type="pil") |
|
output_xyz = gr.Image(label="Generated XYZ", type="pil") |
|
output_glb = gr.Model3D(label="Generated 3D Model") |
|
|
|
|
|
generate_btn.click( |
|
fn=check_input_image, |
|
inputs=[input_image], |
|
outputs=[input_image], |
|
api_name="check_input_image" |
|
).success( |
|
fn=preprocess_image, |
|
inputs=[input_image, background_choice, foreground_ratio, back_groud_color], |
|
outputs=[processed_image], |
|
api_name="preprocess_image" |
|
).success( |
|
fn=gen_image, |
|
inputs=[processed_image, seed, scale, step], |
|
outputs=[output_image, output_xyz, output_glb], |
|
api_name="gen_image" |
|
) |
|
|
|
|
|
demo.queue().launch( |
|
show_error=True |
|
) |