Update imports in inference.py to include numpy, PIL, and mesh utilities for enhanced functionality and improved mesh processing.
d63ad23
import numpy as np | |
import torch | |
import time | |
import tempfile | |
import os | |
from PIL import Image | |
import trimesh | |
from util.utils import get_tri | |
from mesh import Mesh | |
from util.renderer import Renderer | |
def generate3d(model, rgb, ccm, device): | |
model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num, | |
scale=model.input.scale, geo_type=model.geo_type) | |
color_tri = torch.from_numpy(rgb) / 255 | |
xyz_tri = torch.from_numpy(ccm[:, :, (2, 1, 0)]) / 255 | |
color = color_tri.permute(2, 0, 1) | |
xyz = xyz_tri.permute(2, 0, 1) | |
def get_imgs(color): | |
return torch.stack([color[:, :, 256 * i:256 * (i + 1)] for i in [5, 0, 1, 2, 3, 4]], dim=0) | |
triplane_color = get_imgs(color).permute(0, 2, 3, 1).unsqueeze(0).to(device) | |
color = get_imgs(color) | |
xyz = get_imgs(xyz) | |
color = get_tri(color, dim=0, blender=True, scale=1).unsqueeze(0) | |
xyz = get_tri(xyz, dim=0, blender=True, scale=1, fix=True).unsqueeze(0) | |
triplane = torch.cat([color, xyz], dim=1).to(device) | |
model.eval() | |
if model.denoising: | |
tnew = torch.randint(20, 21, [triplane.shape[0]], dtype=torch.long, device=triplane.device) | |
noise_new = torch.randn_like(triplane) * 0.5 + 0.5 | |
triplane = model.scheduler.add_noise(triplane, noise_new, tnew) | |
with torch.no_grad(): | |
triplane_feature2 = model.unet2(triplane, tnew) | |
else: | |
with torch.no_grad(): | |
triplane_feature2 = model.unet2(triplane) | |
data_config = { | |
'resolution': [1024, 1024], | |
"triview_color": triplane_color.to(device), | |
} | |
with torch.no_grad(): | |
verts, faces = model.decode(data_config, triplane_feature2) | |
data_config['verts'] = verts[0] | |
data_config['faces'] = faces | |
verts, faces = clean_mesh( | |
data_config['verts'].squeeze().cpu().numpy().astype(np.float32), | |
data_config['faces'].squeeze().cpu().numpy().astype(np.int32), | |
repair=False, remesh=True, remesh_size=0.005, remesh_iters=1 | |
) | |
data_config['verts'] = torch.from_numpy(verts).cuda().contiguous() | |
data_config['faces'] = torch.from_numpy(faces).cuda().contiguous() | |
# Create base filename | |
temp_path = tempfile.NamedTemporaryFile(suffix="", delete=False).name | |
obj_base = temp_path # no extension | |
# Export mesh with UV and PNG | |
glctx = dr.RasterizeCudaContext() | |
model.export_mesh_wt_uv( | |
glctx, data_config, obj_base, "", device, res=(1024, 1024), tri_fea_2=triplane_feature2 | |
) | |
# Load .obj with texture and export .glb | |
mesh = trimesh.load(obj_base + ".obj", process=False) | |
mesh.export(obj_base + ".glb") | |
return obj_base + ".glb" | |