Commit
·
1452c34
1
Parent(s):
b948a73
fixed api naming
Browse files
app.py
CHANGED
@@ -20,7 +20,66 @@ import argparse
|
|
20 |
from model import CRM
|
21 |
from inference import generate3d
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
pipeline = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
rembg_session = rembg.new_session()
|
25 |
|
26 |
|
@@ -36,9 +95,10 @@ def expand_to_square(image, bg_color=(0, 0, 0, 0)):
|
|
36 |
return new_image
|
37 |
|
38 |
def check_input_image(input_image):
|
|
|
39 |
if input_image is None:
|
40 |
raise gr.Error("No image uploaded!")
|
41 |
-
|
42 |
|
43 |
def remove_background(
|
44 |
image: PIL.Image.Image,
|
@@ -78,100 +138,63 @@ def add_background(image, bg_color=(255, 255, 255)):
|
|
78 |
background = Image.new("RGBA", image.size, bg_color)
|
79 |
return Image.alpha_composite(background, image)
|
80 |
|
|
|
|
|
|
|
|
|
|
|
81 |
|
82 |
-
def preprocess_image(
|
83 |
-
"""
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
"--stage1_config",
|
134 |
-
type=str,
|
135 |
-
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
|
136 |
-
help="config for stage1",
|
137 |
-
)
|
138 |
-
parser.add_argument(
|
139 |
-
"--stage2_config",
|
140 |
-
type=str,
|
141 |
-
default="configs/stage2-v2-snr.yaml",
|
142 |
-
help="config for stage2",
|
143 |
-
)
|
144 |
-
|
145 |
-
parser.add_argument("--device", type=str, default="cuda")
|
146 |
-
args = parser.parse_args()
|
147 |
-
|
148 |
-
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
|
149 |
-
specs = json.load(open("configs/specs_objaverse_total.json"))
|
150 |
-
model = CRM(specs)
|
151 |
-
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
|
152 |
-
model = model.to(args.device)
|
153 |
-
|
154 |
-
stage1_config = OmegaConf.load(args.stage1_config).config
|
155 |
-
stage2_config = OmegaConf.load(args.stage2_config).config
|
156 |
-
stage2_sampler_config = stage2_config.sampler
|
157 |
-
stage1_sampler_config = stage1_config.sampler
|
158 |
-
|
159 |
-
stage1_model_config = stage1_config.models
|
160 |
-
stage2_model_config = stage2_config.models
|
161 |
-
|
162 |
-
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
|
163 |
-
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
|
164 |
-
stage1_model_config.resume = pixel_path
|
165 |
-
stage2_model_config.resume = xyz_path
|
166 |
-
|
167 |
-
pipeline = TwoStagePipeline(
|
168 |
-
stage1_model_config,
|
169 |
-
stage2_model_config,
|
170 |
-
stage1_sampler_config,
|
171 |
-
stage2_sampler_config,
|
172 |
-
device=args.device,
|
173 |
-
dtype=torch.float32
|
174 |
-
)
|
175 |
|
176 |
_DESCRIPTION = '''
|
177 |
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
|
@@ -179,72 +202,75 @@ _DESCRIPTION = '''
|
|
179 |
* If you find the output unsatisfying, try using different seeds:)
|
180 |
'''
|
181 |
|
182 |
-
# Gradio interface
|
183 |
-
with gr.Blocks() as demo:
|
184 |
-
gr.Markdown("# CRM: Single Image to 3D Textured Mesh with Convolutional Reconstruction Model")
|
185 |
gr.Markdown(_DESCRIPTION)
|
186 |
|
187 |
with gr.Row():
|
188 |
with gr.Column():
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
)
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
)
|
202 |
-
|
203 |
-
with gr.Row():
|
204 |
-
seed = gr.Number(value=1234, label="Seed", precision=0)
|
205 |
-
guidance_scale = gr.Number(value=5.5, minimum=3, maximum=10, label="Guidance scale")
|
206 |
-
step = gr.Number(value=30, minimum=30, maximum=100, label="Sample steps", precision=0)
|
207 |
-
|
208 |
-
generate_btn = gr.Button("Generate 3D shape")
|
209 |
-
|
210 |
-
gr.Examples(
|
211 |
-
examples=[os.path.join("examples", i) for i in os.listdir("examples")],
|
212 |
-
inputs=[image_input],
|
213 |
-
examples_per_page=20
|
214 |
)
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
220 |
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
processed = preprocess_image(image, "Auto Remove background", 1.0, "#7F7F7F")
|
229 |
-
|
230 |
-
# Generate the 3D model
|
231 |
-
pipeline.set_seed(seed)
|
232 |
-
rt_dict = pipeline(processed, scale=scale, step=step)
|
233 |
-
stage1_images = rt_dict["stage1_images"]
|
234 |
-
stage2_images = rt_dict["stage2_images"]
|
235 |
-
np_imgs = np.concatenate(stage1_images, 1)
|
236 |
-
np_xyzs = np.concatenate(stage2_images, 1)
|
237 |
-
|
238 |
-
glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
|
239 |
-
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path
|
240 |
-
|
241 |
generate_btn.click(
|
242 |
-
fn=
|
243 |
-
inputs=[
|
244 |
-
outputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
245 |
)
|
246 |
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
|
|
20 |
from model import CRM
|
21 |
from inference import generate3d
|
22 |
|
23 |
+
# Move model initialization into a function that will be called by workers
|
24 |
+
def init_model():
|
25 |
+
parser = argparse.ArgumentParser()
|
26 |
+
parser.add_argument(
|
27 |
+
"--stage1_config",
|
28 |
+
type=str,
|
29 |
+
default="configs/nf7_v3_SNR_rd_size_stroke.yaml",
|
30 |
+
help="config for stage1",
|
31 |
+
)
|
32 |
+
parser.add_argument(
|
33 |
+
"--stage2_config",
|
34 |
+
type=str,
|
35 |
+
default="configs/stage2-v2-snr.yaml",
|
36 |
+
help="config for stage2",
|
37 |
+
)
|
38 |
+
parser.add_argument("--device", type=str, default="cuda")
|
39 |
+
args = parser.parse_args()
|
40 |
+
|
41 |
+
# Download model files
|
42 |
+
crm_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="CRM.pth")
|
43 |
+
specs = json.load(open("configs/specs_objaverse_total.json"))
|
44 |
+
model = CRM(specs)
|
45 |
+
model.load_state_dict(torch.load(crm_path, map_location="cpu"), strict=False)
|
46 |
+
model = model.to(args.device)
|
47 |
+
|
48 |
+
# Load configs
|
49 |
+
stage1_config = OmegaConf.load(args.stage1_config).config
|
50 |
+
stage2_config = OmegaConf.load(args.stage2_config).config
|
51 |
+
stage2_sampler_config = stage2_config.sampler
|
52 |
+
stage1_sampler_config = stage1_config.sampler
|
53 |
+
|
54 |
+
stage1_model_config = stage1_config.models
|
55 |
+
stage2_model_config = stage2_config.models
|
56 |
+
|
57 |
+
xyz_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="ccm-diffusion.pth")
|
58 |
+
pixel_path = hf_hub_download(repo_id="Zhengyi/CRM", filename="pixel-diffusion.pth")
|
59 |
+
stage1_model_config.resume = pixel_path
|
60 |
+
stage2_model_config.resume = xyz_path
|
61 |
+
|
62 |
+
pipeline = TwoStagePipeline(
|
63 |
+
stage1_model_config,
|
64 |
+
stage2_model_config,
|
65 |
+
stage1_sampler_config,
|
66 |
+
stage2_sampler_config,
|
67 |
+
device=args.device,
|
68 |
+
dtype=torch.float32
|
69 |
+
)
|
70 |
+
|
71 |
+
return model, pipeline
|
72 |
+
|
73 |
+
# Global variables to store model and pipeline
|
74 |
+
model = None
|
75 |
pipeline = None
|
76 |
+
|
77 |
+
def get_model():
|
78 |
+
global model, pipeline
|
79 |
+
if model is None or pipeline is None:
|
80 |
+
model, pipeline = init_model()
|
81 |
+
return model, pipeline
|
82 |
+
|
83 |
rembg_session = rembg.new_session()
|
84 |
|
85 |
|
|
|
95 |
return new_image
|
96 |
|
97 |
def check_input_image(input_image):
|
98 |
+
"""Check if the input image is valid"""
|
99 |
if input_image is None:
|
100 |
raise gr.Error("No image uploaded!")
|
101 |
+
return input_image
|
102 |
|
103 |
def remove_background(
|
104 |
image: PIL.Image.Image,
|
|
|
138 |
background = Image.new("RGBA", image.size, bg_color)
|
139 |
return Image.alpha_composite(background, image)
|
140 |
|
141 |
+
def add_random_background(image, color):
|
142 |
+
# Add a random background to the image
|
143 |
+
width, height = image.size
|
144 |
+
background = Image.new("RGBA", image.size, color)
|
145 |
+
return Image.alpha_composite(background, image)
|
146 |
|
147 |
+
def preprocess_image(input_image, background_choice, foreground_ratio, back_groud_color):
|
148 |
+
"""Preprocess the input image"""
|
149 |
+
try:
|
150 |
+
# Get model and pipeline when needed
|
151 |
+
model, pipeline = get_model()
|
152 |
+
|
153 |
+
# Convert to numpy array
|
154 |
+
np_image = np.array(input_image)
|
155 |
+
|
156 |
+
# Process background
|
157 |
+
if background_choice == "Remove Background":
|
158 |
+
np_image = rembg.remove(np_image, session=rembg_session)
|
159 |
+
elif background_choice == "Custom Background":
|
160 |
+
np_image = add_random_background(np_image, back_groud_color)
|
161 |
+
|
162 |
+
# Resize content if needed
|
163 |
+
if foreground_ratio != 1.0:
|
164 |
+
np_image = do_resize_content(Image.fromarray(np_image), foreground_ratio)
|
165 |
+
np_image = np.array(np_image)
|
166 |
+
|
167 |
+
return Image.fromarray(np_image)
|
168 |
+
except Exception as e:
|
169 |
+
print(f"Error in preprocess_image: {str(e)}")
|
170 |
+
raise e
|
171 |
+
|
172 |
+
def gen_image(processed_image, seed, scale, step):
|
173 |
+
"""Generate the 3D model"""
|
174 |
+
try:
|
175 |
+
# Get model and pipeline when needed
|
176 |
+
model, pipeline = get_model()
|
177 |
+
|
178 |
+
# Convert to numpy array
|
179 |
+
np_image = np.array(processed_image)
|
180 |
+
|
181 |
+
# Set random seed
|
182 |
+
torch.manual_seed(seed)
|
183 |
+
np.random.seed(seed)
|
184 |
+
|
185 |
+
# Generate images
|
186 |
+
np_imgs, np_xyzs = pipeline.generate(
|
187 |
+
np_image,
|
188 |
+
guidance_scale=scale,
|
189 |
+
num_inference_steps=step
|
190 |
+
)
|
191 |
+
|
192 |
+
# Generate 3D model
|
193 |
+
glb_path = generate3d(model, np_imgs, np_xyzs, args.device)
|
194 |
+
return Image.fromarray(np_imgs), Image.fromarray(np_xyzs), glb_path
|
195 |
+
except Exception as e:
|
196 |
+
print(f"Error in gen_image: {str(e)}")
|
197 |
+
raise e
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
198 |
|
199 |
_DESCRIPTION = '''
|
200 |
* Our [official implementation](https://github.com/thu-ml/CRM) uses UV texture instead of vertex color. It has better texture than this online demo.
|
|
|
202 |
* If you find the output unsatisfying, try using different seeds:)
|
203 |
'''
|
204 |
|
205 |
+
# Create Gradio interface
|
206 |
+
with gr.Blocks(title="CRM: 3D Character Generation from Single Image") as demo:
|
|
|
207 |
gr.Markdown(_DESCRIPTION)
|
208 |
|
209 |
with gr.Row():
|
210 |
with gr.Column():
|
211 |
+
input_image = gr.Image(label="Input Image", type="pil")
|
212 |
+
background_choice = gr.Radio(
|
213 |
+
choices=["Remove Background", "Custom Background"],
|
214 |
+
value="Remove Background",
|
215 |
+
label="Background Option"
|
216 |
)
|
217 |
+
foreground_ratio = gr.Slider(
|
218 |
+
minimum=0.1,
|
219 |
+
maximum=1.0,
|
220 |
+
value=1.0,
|
221 |
+
step=0.1,
|
222 |
+
label="Foreground Ratio"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
223 |
)
|
224 |
+
back_groud_color = gr.ColorPicker(
|
225 |
+
label="Background Color",
|
226 |
+
value="#FFFFFF"
|
227 |
+
)
|
228 |
+
seed = gr.Number(
|
229 |
+
label="Seed",
|
230 |
+
value=42,
|
231 |
+
precision=0
|
232 |
+
)
|
233 |
+
scale = gr.Slider(
|
234 |
+
minimum=1.0,
|
235 |
+
maximum=20.0,
|
236 |
+
value=7.5,
|
237 |
+
step=0.1,
|
238 |
+
label="Guidance Scale"
|
239 |
+
)
|
240 |
+
step = gr.Slider(
|
241 |
+
minimum=1,
|
242 |
+
maximum=100,
|
243 |
+
value=50,
|
244 |
+
step=1,
|
245 |
+
label="Steps"
|
246 |
+
)
|
247 |
+
generate_btn = gr.Button("Generate 3D Model")
|
248 |
|
249 |
+
with gr.Column():
|
250 |
+
processed_image = gr.Image(label="Processed Image", type="pil")
|
251 |
+
output_image = gr.Image(label="Generated Image", type="pil")
|
252 |
+
output_xyz = gr.Image(label="Generated XYZ", type="pil")
|
253 |
+
output_glb = gr.Model3D(label="Generated 3D Model")
|
254 |
+
|
255 |
+
# Connect the functions with explicit API names
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
256 |
generate_btn.click(
|
257 |
+
fn=check_input_image,
|
258 |
+
inputs=[input_image],
|
259 |
+
outputs=[input_image],
|
260 |
+
api_name="check_input_image"
|
261 |
+
).success(
|
262 |
+
fn=preprocess_image,
|
263 |
+
inputs=[input_image, background_choice, foreground_ratio, back_groud_color],
|
264 |
+
outputs=[processed_image],
|
265 |
+
api_name="preprocess_image"
|
266 |
+
).success(
|
267 |
+
fn=gen_image,
|
268 |
+
inputs=[processed_image, seed, scale, step],
|
269 |
+
outputs=[output_image, output_xyz, output_glb],
|
270 |
+
api_name="gen_image"
|
271 |
)
|
272 |
|
273 |
+
# For Hugging Face Spaces, use minimal configuration
|
274 |
+
demo.queue().launch(
|
275 |
+
show_error=True # Only keep error display for debugging
|
276 |
+
)
|