Spaces:
mashroo
/
Running on Zero

YoussefAnso commited on
Commit
38006c2
·
1 Parent(s): ffc0d64

Refactor mesh generation in app.py and update remeshing parameters in inference.py

Browse files

- Removed trimesh and KDTree functionality from app.py for simplified mesh handling.
- Adjusted remesh size and iterations in the generate3d function to enhance mesh quality.

Files changed (2) hide show
  1. app.py +1 -18
  2. inference.py +1 -1
app.py CHANGED
@@ -18,8 +18,6 @@ import json
18
  import argparse
19
  import requests
20
  import tempfile
21
- import trimesh
22
- from scipy.spatial import cKDTree
23
 
24
  from model import CRM
25
  from inference import generate3d
@@ -278,19 +276,4 @@ with gr.Blocks() as demo:
278
  inputs=inputs,
279
  outputs=outputs,
280
  )
281
- demo.queue().launch()
282
-
283
- # After mesh generation, fill holes
284
- mesh = trimesh.Trimesh(vertices=verts, faces=faces)
285
- mesh.fill_holes()
286
-
287
- # Find new vertices (those not in the original set)
288
- if mesh.vertices.shape[0] > old_vertices.shape[0]:
289
- new_vtx = mesh.vertices[old_vertices.shape[0]:]
290
- # Use KDTree to find nearest old vertex for each new vertex
291
- tree = cKDTree(old_vertices)
292
- dists, idxs = tree.query(new_vtx)
293
- new_colors = old_colors[idxs]
294
- # Concatenate old and new colors
295
- all_colors = np.vstack([old_colors, new_colors])
296
- mesh.visual.vertex_colors = all_colors
 
18
  import argparse
19
  import requests
20
  import tempfile
 
 
21
 
22
  from model import CRM
23
  from inference import generate3d
 
276
  inputs=inputs,
277
  outputs=outputs,
278
  )
279
+ demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
inference.py CHANGED
@@ -63,7 +63,7 @@ def generate3d(model, rgb, ccm, device):
63
  verts, faces = clean_mesh(
64
  data_config['verts'].squeeze().cpu().numpy().astype(np.float32),
65
  data_config['faces'].squeeze().cpu().numpy().astype(np.int32),
66
- repair=False, remesh=True, remesh_size=0.005, remesh_iters=1
67
  )
68
  data_config['verts'] = torch.from_numpy(verts).to(device).contiguous()
69
  data_config['faces'] = torch.from_numpy(faces).to(device).contiguous()
 
63
  verts, faces = clean_mesh(
64
  data_config['verts'].squeeze().cpu().numpy().astype(np.float32),
65
  data_config['faces'].squeeze().cpu().numpy().astype(np.int32),
66
+ repair=False, remesh=True, remesh_size=0.01, remesh_iters=2
67
  )
68
  data_config['verts'] = torch.from_numpy(verts).to(device).contiguous()
69
  data_config['faces'] = torch.from_numpy(faces).to(device).contiguous()