Spaces:
mashroo
/
Running on Zero

YoussefAnso commited on
Commit
8690d62
·
1 Parent(s): cc413d0

Refactor generate3d function in inference.py to improve readability by removing unnecessary blank lines. Update requirements.txt to remove gradio and numpy versions for cleaner dependency management.

Browse files
Files changed (2) hide show
  1. inference.py +1 -5
  2. requirements.txt +1 -3
inference.py CHANGED
@@ -7,8 +7,8 @@ import tempfile
7
  from mesh import Mesh
8
  import zipfile
9
  from util.renderer import Renderer
10
- def generate3d(model, rgb, ccm, device):
11
 
 
12
  model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num,
13
  scale=model.input.scale, geo_type = model.geo_type)
14
 
@@ -17,7 +17,6 @@ def generate3d(model, rgb, ccm, device):
17
  color = color_tri.permute(2,0,1)
18
  xyz = xyz_tri.permute(2,0,1)
19
 
20
-
21
  def get_imgs(color):
22
  # color : [C, H, W*6]
23
  color_list = []
@@ -38,7 +37,6 @@ def generate3d(model, rgb, ccm, device):
38
  # 3D visualize
39
  model.eval()
40
 
41
-
42
  if model.denoising == True:
43
  tnew = 20
44
  tnew = torch.randint(tnew, tnew+1, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
@@ -53,7 +51,6 @@ def generate3d(model, rgb, ccm, device):
53
  else:
54
  triplane_feature2 = model.unet2(triplane)
55
 
56
-
57
  with torch.no_grad():
58
  data_config = {
59
  'resolution': [1024, 1024],
@@ -65,7 +62,6 @@ def generate3d(model, rgb, ccm, device):
65
  data_config['verts'] = verts[0]
66
  data_config['faces'] = faces
67
 
68
-
69
  from kiui.mesh_utils import clean_mesh
70
  verts, faces = clean_mesh(data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair = False, remesh=True, remesh_size=0.005, remesh_iters=1)
71
  data_config['verts'] = torch.from_numpy(verts).cuda().contiguous()
 
7
  from mesh import Mesh
8
  import zipfile
9
  from util.renderer import Renderer
 
10
 
11
+ def generate3d(model, rgb, ccm, device):
12
  model.renderer = Renderer(tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num,
13
  scale=model.input.scale, geo_type = model.geo_type)
14
 
 
17
  color = color_tri.permute(2,0,1)
18
  xyz = xyz_tri.permute(2,0,1)
19
 
 
20
  def get_imgs(color):
21
  # color : [C, H, W*6]
22
  color_list = []
 
37
  # 3D visualize
38
  model.eval()
39
 
 
40
  if model.denoising == True:
41
  tnew = 20
42
  tnew = torch.randint(tnew, tnew+1, [triplane.shape[0]], dtype=torch.long, device=triplane.device)
 
51
  else:
52
  triplane_feature2 = model.unet2(triplane)
53
 
 
54
  with torch.no_grad():
55
  data_config = {
56
  'resolution': [1024, 1024],
 
62
  data_config['verts'] = verts[0]
63
  data_config['faces'] = faces
64
 
 
65
  from kiui.mesh_utils import clean_mesh
66
  verts, faces = clean_mesh(data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair = False, remesh=True, remesh_size=0.005, remesh_iters=1)
67
  data_config['verts'] = torch.from_numpy(verts).cuda().contiguous()
requirements.txt CHANGED
@@ -1,12 +1,10 @@
1
- gradio==4.21.0
2
- pydantic-core==2.22.0
3
  huggingface-hub==0.19.4
4
  diffusers==0.24.0
5
  einops==0.7.0
6
  Pillow==10.1.0
7
  transformers==4.27.1
8
  open-clip-torch==2.7.0
9
- numpy==1.24.3
10
  opencv-contrib-python-headless==4.9.0.80
11
  opencv-python-headless==4.9.0.80
12
  xformers
 
1
+ gradio
 
2
  huggingface-hub==0.19.4
3
  diffusers==0.24.0
4
  einops==0.7.0
5
  Pillow==10.1.0
6
  transformers==4.27.1
7
  open-clip-torch==2.7.0
 
8
  opencv-contrib-python-headless==4.9.0.80
9
  opencv-python-headless==4.9.0.80
10
  xformers