import numpy as np import torch import time import nvdiffrast.torch as dr from util.utils import get_tri import tempfile from mesh import Mesh import zipfile from util.renderer import Renderer import trimesh # Needed for glb export def generate3d(model, rgb, ccm, device): model.renderer = Renderer( tet_grid_size=model.tet_grid_size, camera_angle_num=model.camera_angle_num, scale=model.input.scale, geo_type=model.geo_type ) # RGB and coordinate conversion color_tri = torch.from_numpy(rgb) / 255 xyz_tri = torch.from_numpy(ccm[:, :, (2, 1, 0)]) / 255 color = color_tri.permute(2, 0, 1) xyz = xyz_tri.permute(2, 0, 1) def get_imgs(color): color_list = [color[:, :, 256 * 5:256 * (1 + 5)]] for i in range(0, 5): color_list.append(color[:, :, 256 * i:256 * (1 + i)]) return torch.stack(color_list, dim=0) triplane_color = get_imgs(color).permute(0, 2, 3, 1).unsqueeze(0).to(device) color = get_imgs(color) xyz = get_imgs(xyz) color = get_tri(color, dim=0, blender=True, scale=1).unsqueeze(0) xyz = get_tri(xyz, dim=0, blender=True, scale=1, fix=True).unsqueeze(0) triplane = torch.cat([color, xyz], dim=1).to(device) model.eval() if model.denoising: tnew = torch.randint(20, 21, [triplane.shape[0]], dtype=torch.long, device=triplane.device) noise_new = torch.randn_like(triplane) * 0.5 + 0.5 triplane = model.scheduler.add_noise(triplane, noise_new, tnew) with torch.no_grad(): triplane_feature2 = model.unet2(triplane, tnew) else: triplane_feature2 = model.unet2(triplane) with torch.no_grad(): data_config = { 'resolution': [1024, 1024], 'triview_color': triplane_color.to(device), } verts, faces = model.decode(data_config, triplane_feature2) data_config['verts'] = verts[0] data_config['faces'] = faces # Optional mesh cleanup (reduce remesh for speed) from kiui.mesh_utils import clean_mesh verts, faces = clean_mesh( data_config['verts'].squeeze().cpu().numpy().astype(np.float32), data_config['faces'].squeeze().cpu().numpy().astype(np.int32), repair=False, remesh=True, remesh_size=0.005, remesh_iters=1 ) data_config['verts'] = torch.from_numpy(verts).cuda().contiguous() data_config['faces'] = torch.from_numpy(faces).cuda().contiguous() # Rasterization context glctx = dr.RasterizeGLContext() # Temporary output path mesh_path_obj = tempfile.NamedTemporaryFile(suffix="", delete=False).name # Export OBJ with UV and PNG with torch.no_grad(): model.export_mesh_wt_uv( glctx, data_config, mesh_path_obj, "", device, res=(512, 512), tri_fea_2=triplane_feature2 ) # Convert to .glb using trimesh mesh = trimesh.load(mesh_path_obj + ".obj", force='mesh') mesh_path_glb = mesh_path_obj + ".glb" mesh.export(mesh_path_glb, file_type='glb') print(f"✅ Exported GLB with UV texture: {mesh_path_glb}") return mesh_path_glb